首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new tetradentate tetraaza ligand was prepared via Schiff-base condensation of 3,4-diaminotoluene with 2,3-butandione monoxime in aqueous solution. This ligand coordinates cobalt(III) through nitrogen donors in equatorial positions with loss of one oxime proton with concomitant formation of an intramolecular hydrogen bond. A series of cobalt(III) complexes, [CoLX2] (X?=?Cl?, Br?, or I?), [SCNCoLBr], [CNCoLBr], [BF2CoLBr], and [YCoLBr]ClO4 (Y?=?pyridine, thiophene, triphenylphosphine, or n-pentylamine), was synthesized. The compounds were characterized based on the elemental analysis (C, H, N), electrical conductance, magnetic moment measurements, and spectral studies (IR, 1H NMR, and UV-Vis). Thermal stabilities of representative complexes were examined by using thermal analysis (TGA and DTG). The reported complexes are d6 low-spin diamagnetic and a distorted octahedral environment was proposed. All complexes undergo tetragonal distortion as evidenced by splitting of 1T1g and 1T2g levels of the pseudo-octahedral symmetry. The ligand field parameters such as DqE , DqA , and the tetragonal splitting Dt have been computed and correlated with the nature of the coordinated axial ligands. The reported cobalt(III) complexes exhibit promising catalytic activity toward aerobic oxidation of ascorbic acid to the corresponding dehydroascorbic acid. The oxidase catalytic activity is linked to both the tetragonal splitting parameter Dt and the Lewis-acidity of cobalt(III) created by the nature of the coordinated axial ligands. The probable mechanistic implications of the catalytic oxidation reactions are discussed.  相似文献   

2.
Four tridentate O, N, O donor Schiff base ligands were prepared by the reaction of substituted benzhydrazide and appropriate salicylaldehyde. The complexes of these ligands were synthesized by refluxing the ligands with ruthenium(II) starting complexes of the formula [RuHCl(CO)(EPh3)2B] in benzene, where E = P or As; B = PPh3 or AsPh3 or pyridine. The newly synthesized complexes were characterized by elemental, spectral (FT‐IR, UV and NMR) and electrochemical data. On the basis of the above studies, an octahedral structure has been proposed for all the complexes. The catalytic efficiency of the complexes in aryl–aryl couplings and oxidation of alcohols was examined and their inhibition activity against the growth of the micro‐organisms was also examined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Four copper(II) complexes with N-allyl di(picolyl)amine were synthesized and characterized by physico-chemical and spectroscopic methods. The spectrophotometric and fluorescence titration data indicate that the [(Aldpa)Cu(L)](ClO4)2 (L = dppz, dione, phen) with conjugated aromatic rings as coordinated ligands can be inserted into the base stacks of DNA more deeply than the [(Aldpa)CuCl2]. The copper(II) complexes [(Aldpa)Cu(L)](ClO4)2 (L = dppz, dione, phen) can inhibit the proliferation of the four cancer cells (Mcf-7, Eca-109, A549 and HeLa) with IC50 0.5–19.2 μM, which is larger than that (23.2–84.3 μM) of [(Aldpa)CuCl2], suggesting their inhibiting activities on the four cancer cells are correlated with their DNA-binding properties. However, the selectivity of [(Aldpa)CuCl2] to cancer cells is better than that of the other three complexes [(Aldpa)Cu(L)](ClO4)2, which indicates the substituents introduced on the secondary amino nitrogen atom of dpa have great contribution to the antitumor activities of these copper(II) complexes.  相似文献   

4.
Three new Cu(II) complexes with ethyl bis(2-pyridylmethyl)amino-2-propionate (Etdpa), or bis(2-pyridylmethyl)amino-2-propionate (Adpa), were synthesized and characterized by physico-chemical and spectroscopic methods. The X-ray crystal structure of [(Adpa)CuCl] shows that the copper(II) atom is coordinated by three N atoms, one oxygen atom from the ligand (Adpa) and one chloride anion, forming a trigonal bipyramidal geometry. The spectrophotometric and fluorescence titration data indicate that the interaction of square pyramidal [(Etdpa)CuCl2] with ct-DNA is weak, but the trigonal bipyramidal complexes [(Adpa)Cu(H2O)](ClO4) and [(Adpa)CuCl] interact with ct-DNA with the mode of intercalation. The inhibition activities of the three new copper(II) complexes on the four cancer cells (Mcf-7, Eca-109, A549, and Hela) are in the order: [(Adpa)Cu(H2O)](ClO4) > [(Adpa)CuCl] > [(Etdpa)CuCl2], which correlates with their DNA-binding properties. The results show that the substituents introduced on the secondary amino nitrogen atom of dpa have great contribution to the antitumor activities of these copper(II) complexes. It is also found that the coordination of copper(II) ions with AdpaH can decrease the toxicity of AdpaH. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The chelating behavior of some hydrazones towards Cu(II) has been investigated. The isolated complexes were characterized by elemental analysis, magnetic moment, spectra (electronic, IR and ms) and thermal measurements. The IR spectra showed that the ligands are deprotonated in the complexes as bidentate, tridentate and binegative tridentate. Protonation constants of the ligands and the stability constants of their Cu(II) complexes were calculated. Square-planar, square-pyramidal, tetrahedral and/or distorted octahedral structures are proposed. The TGA data help to confirm the chemical formula of the complexes and indicated the steps of their thermal degradations.  相似文献   

6.
The preparation and characterization of MnII, FeIII and CuII complexes of three tridentate pyridyl hydrazones are reported. The ligands were prepared via Schiff base condensation of 6-chloro-2-hydrazopyridine with alpha-formyl-(L1), alpha-acetyl-(L2), or alpha-benzoyl-(L3) pyridine. The structural characterization of the compounds prepared was based on elemental analyses, electrical conductance and magnetic moment measurements, 1H-n.m.r., i.r., u.v.-vis. and e.s.r spectroscopic methods. The overall structure and reactivity of the metal chelates critically depend on the ligand substituents within the carbonyl moiety. Octahedral and tetrahedral monomeric species were proposed for MnII complexes, and an octahedral environment for the FeIII complexes. Regarding the copper(II) complexes, a monomeric square-planar and a dimeric structure with a chloride bridge in square-pyramidal geometry were suggested. In the presence of molecular oxygen, MnII and CuII complexes catalyse the oxidative transformation of catechol (benzene-1,2-diol) to the corresponding o-benzoquinone. Iron(III) complexes catalyse the aerobic oxidation of catechol to the intradiol cleavage product. The catalytic activity has been correlated with the Lewis acidity of the metal centres created according to the nature of the ligand substituents. The probable mechanistic implications of the catalysed oxidation reactions are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The synthesis, characterization and catalytic activity of a series of tetra-halo-dimethyl salen and di-halo-tetramethyl-salen ligands are reported in this paper: α,α′-dimethyl-Salen (dMeSalen) (L1); 3,3′,5,5′-tetrachloro-α,α′-dimethyl-Salen, (tCldMeSalen) (L2); 3,3′-dibromo-5,5′-dichloro-α,α′-dimethyl-Salen, (dCldBrdMeSalen) (L3); 3,3′,5,5′-tetrabromo-α,α′-dimethyl-Salen, (tBrdMeSalen) (L4); 3,3′,5,5′-tetraiodo-α,α′-dimethyl-salen, (tIdMeSalen) (L5); 3,3′-dichloro-5,5′,α,α′-tetramethyl-Salen (dCltMeSalen) (L6); 3,3′-dibromo-5,5′,α,α′-tetramethyl-Salen (dBrtMeSalen) (L7); and 3,3′-diiodo-5,5′,α,α′-tetramethyl-Salen (dItMeSalen) (L8) (Salen = bis(salicylaldehyde)ethylenediamine). Upon reaction with Co(II) ions, these ligands form complexes with square planar geometry that have been characterized by elemental analysis, cyclic voltammetry, UV–Vis, IR and EPR spectroscopies. In the presence of pyridine the obtained Co(II) complexes were found able to bind reversibly O2, which was shown by EPR spectroscopy and cyclic voltammetry. They were also found able to catalyze the oxidation of 2,6-di-tert-butylphenol (DtBuP) (9) with formation of 2,6-di-tert-butyl-1,4-benzoquinone (DtBuQ) (10) and 2,6,2′,6′-tetra-tert-butyl-1,1′-diphenobenzoquinone (TtBuDQ) (11). These properties are first influenced by the coordination of pyridine in axial position of the Co(II) ion that causes an increase of the electronic density on the cobalt ion and as a consequence a decrease in the E1/2 value and an increase of the reducing power of the Co(II) complex. It is noteworthy that, under those conditions the complexes also show a remarkable quasi-reversible behaviour. Second, complex properties are also influenced by the substituents (methyl and halogen) grafted on the aromatic ring and on the azomethynic groups. The donating methyl substituent on the azomethynic groups causes a decrease in the E1/2 value, whereas the halogen substituents on the aromatic rings have two effects: a mesomeric donating effect that tends to lower the redox potential of the complex, and a steric effect that tends to decrease the conjugation of the ligand and then to increase the redox potential of the Co(II) complex. In pyridine, the steric effect predominates, which causes both an increase of the redox potential and a decrease of the selectivity of the oxidation of phenol 9. As a result of all these effects, it then appears that the best catalysts to realize the selective oxidation of 2,6-di-tert-butyl-phenol (9) by O2 are the Co complexes of ligands bearing CH3 donating substituents, Co(dMeSalen) 1 (2CH3 substituents), and Co-di-halo-tetra-methyl-salen complexes 6, 7 and 8 (4CH3 substituents), in the presence of pyridine.  相似文献   

8.
Prophane sulfonic acid hydrazide (psh: CH(3)CH(2)CH(2)SO(2)NHNH(2)) derivatives as salicylaldehydeprophanesulfonylhydrazone (salpsh), 5-methylsalicylaldehydeprophanesulfonylhydrazone (5-msalpsh), 2-hydroxyacetophenoneprophanesulfonylhydrazone (afpsh), 5-methyl-2-hydroxyacetophenoneprophanesulfonylhydrazone (5-mafpsh) and their Ni(II) complexes have been synthesized. The structure of these compounds has been investigated by using elemental analysis, FTIR, (1)H NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility and conductivity measurements. The complexes were found to have general compositions [NiL2]. Square-planer structures are proposed for the Ni(II) complexes on the basis of magnetic evidence, electronic spectra and TGA data. Bacterial activities of sulfonyl hydrazone compounds were studied against gram-positive bacteria: Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and gram-negative bacteria: Salmonella enteritidis, Escherichia coli by using minimum inhibitory concentrations (MICs) method.  相似文献   

9.
Transition Metal Chemistry - A new set of copper- and zinc-diamine (N-alkylated (L1) and N,N'-dialkylated (L2)) complexes, [Cu(L1)2(NO3)2] (1), [Cu(L1)2(Cl)2].5H2O (2), [Cu(L2)2(NO3)2] (3),...  相似文献   

10.
Two series of new organolanthanide(II) complexes with tetrahydro-2H-pyranyl- or N-piperidineethyl-functionalized fluorenyl ligands were synthesized via one-electron reductive elimination reaction. Treatments of [(Me3Si)2N]3LnIII(μ-Cl)Li(THF)3 with 2 equiv. of C5H9OCH2C13H9 (1) or C5H10NCH2CH2C13H9 (2), respectively, in toluene at about 80 °C produced, after workup, the corresponding organolanthanide(II) complexes with formula [η51-C5H9OCH2C13H8]2LnII (Ln = Yb (3), Ln = Eu (4)) and [η51-C5H10NCH2CH2C13H8]2LnII (Ln = Yb (5), Ln = Eu (6)) in good yields. All the compounds were fully characterized by spectroscopic methods and elemental analyses. The structures of complexes 3, 4, and 6 were additionally determined by single-crystal X-ray analyses. It represents the first example of solvent-free organolanthanide(II) complexes with fluorenyl ligands. The catalytic properties of the organolanthanide(II) complexes on the polymerization of ε-caprolactone and methyl methacrylate have been studied. The temperatures, solvents and coordination effects on the catalytic activities of the complexes were examined.  相似文献   

11.
12.
Fan  Chun-Mei  Bai  Ling-Jun  Wei  Lian-Hu  Yang  Wu-Lin  Guo  De-Wei 《Transition Metal Chemistry》1997,22(2):109-112
Ternary complexes of glycine, alanine, -alanine, serine and ethylenediamine with copper iminodiacetate have been prepared and characterized by their i.r., u.v.-vis. and e.s.r. spectra. The data suggest that the complexes possess axial symmetry and a distorted octahedral configuration in aqueous solution. The H2O molecule on the axial copper site can be replaced by O2–. The bonding parameters, which fall between 0.84 and 0.88, indicate that the bonds between copper(II) and the ligands possess more ionic character. The ternary complex containing serine displays the highest catalytic activity in dismutation of the superoxide radical O2–. This activity may be explained on the basis of the stabilization of CuII-O2– by hydrogen bonding.  相似文献   

13.
The reaction of [VO(Acac)2] with 4-methyl-N′-[(2-hydroxy-1-naphthyl)methylidene]benzohydrazide (H2L1) and 4-methyl-N′-[1-(2-hydroxynaphthyl)ethyiidene]benzohydrazide (H2L2), respectively, in methanol, affords two new oxovanadium(V) complexes [VO(OMe)L1]2 (I) and [VO(OMe)L2] (II). Both complexes have been characterized by elemental analysis, IR, and single crystal X-ray diffraction methods. Complex I is a methoxide-bridged dinuclear oxovanadium(V) compound, while complex II is a mononuclear oxovanadium(V) compound. The dinegative hydrazone ligands coordinate to the metal atoms through phenolate, imine, and deprotonated amide donor atoms. The geometry around vanadium atom in I is a distorted VNO5 octahedron, while that in II is a VNO4 square pyramid. Both complexes have effective catalytic property for the sulfoxidation reaction.  相似文献   

14.
At room temperature, dibenzoyl peroxide undergoes oxidative addition reaction with metallic copper powder and pyridine N-oxide (triphenylphosphine oxide or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin) which affords the last products as binuclear copper(II) complexes, [Cu(C5H5NO)-(C6H5COO)2]2(1), [Cu(OPPh3)(C6H5COO)2]2(2) and [Cu(C6H5COO)(C26H2oN2)](3, C26H2oN2 is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin). The structure of the complexes were characterized by elemental analyses, IR spectra, TG-DTA and magnetic property. Crystals(1) are triclinic, space group P1,a=0.92617(36),b=1.06973(17), c=1.08813(29) nm, a=59.60(2)°, β=74.83(3)°,γ=72.80(2)°, V=0.880 nm3, Dc=1.520 g/cm3, Z=1, R=0.044, Rw=0.048, Mr=805.78, 3477 reflections with I > 3σ(I). Each copper(Ⅱ) ion is coordinated by two bridging bidentate benzoate ligands and one pyridine N-oxide or triphenylphosphine oxide to form dimeric binuclear molecules. The structure of the compound(1) shows a clear centre of symmetry.  相似文献   

15.
Ternary copper(II) complexes involving polypyridyl ligands in the coordination sphere of composition [Cu(tpy)(phen)](ClO4)2 (1), [Cu(tpy)(bipy)](ClO4)2 (2), [Cu(tptz)(phen)](ClO4)2 (3) and [Cu(tptz)(bipy)](BF4)2 (4) where tpy = 2,2':6',2'-terpyridine, tptz = 2,4,6-tri(2-pyridyl)-1,3,5-triazine, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine have been synthesized and characterized by elemental analysis, magnetic susceptibility, X-band e.p.r. spectroscopy and electronic spectroscopy. Single crystal X-ray of (1) has revealed the presence of a distorted square pyramidal geometry in the complex. Magnetic susceptibility measurements at room temperature were in the range of 1.77-1.81 BM. SOD and antimicrobial activities of these complexes were also measured. Crystal data of (1): P-1, a = 9.3010(7) A, b = 9.7900(6) A, c = 16.4620(6) A, Vc = 1342.73(14) A3, Z = 4. The bond distance of CuN in square base is 2+/-0.04 A.  相似文献   

16.
The crystal structures of two copper(II) complexes of the cyclohexanecarboxylate ligand, namely [Cu(C6H11CO2)2(H2O)2]·H2O (1) and [Cu(dpyam)2(C6H11CO2)](NO3)·H2O (2) (C6H11CO2H = cyclohexanecarboxylic acid; dpyam = di-2-pyridylamine), have been determined by single-crystal X-ray analysis. Complex 1 contains the square-planar trans-CuO4 chromophore, while 2 shows the square pyramidal cis-distorted octahedral CuN4OO′ chromophore. Both complexes were found to show strong inhibitory activity against jack bean urease (IC50 = 1.75 and 8.57 μM for 1 and 2, respectively), when compared with acetohydroxamic acid (IC50 = 63.12 μM).  相似文献   

17.
18.
Vicinal carbonyl-oxime and oxime-imine ligands were used in the synthesis of new RuIII oxime complexes and the isolated chelates were characterized by elemental analysis, electrical conductance and magnetic moment measurements. I.r., u.v.–vis. and e.s.r. spectroscopic analysis methods were also employed. The spectral data were utilized to compute the important ligand field parameters B, β and Dq. The carbonyl-oxime ligand coordinates through the nitrogen of =N-OH to form a five-membered chelate ring. Replacement of the C=O group by C=N-NH2 induces the =N-OH group to coordinate through the oxygen, forming thereby a six-membered chelate ring. The quadridentate tetraaza ligand (L7) coordinates with RuIII through its nitrogen donors in the equatorial position with loss of one of the oxime protons and concomitant formation of an intramolecular hydrogen bond. The spectral and magnetic results suggest a slightly distorted octahedral environment around the RuIII ion. The superoxide dismutase (SOD) mimetic activity of the prepared complexes was assessed for their ability to inhibit the reduction of nitroblue tetrazolium (NBT). The results demonstrate that most of the complexes have promising SOD-mimetic activity. A probable mechanism for the catalytic scavenging of O2− by RuIII oximes is proposed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Stable ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′‐hydroxychalcones) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′‐hydroxychalcones in benzene under reflux. The new complexes were characterized by analytical and spectroscopic (IR, electronic 1H, 31P and 13C NMR) data. They were assigned an octahedral structure. The complexes exhibited catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N‐methylmorpholine‐N‐oxide (NMO) as co‐oxidant and were also found to be efficient transfer hydrogenation catalysts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Three new Pd(II) complexes of Schiff base ligands, namely, [Pd4(L1)4] (1), [Pd2(L2)2Cl2] (2) and [Pd(L3)2Cl2] (3) [HL 1 ?=?N-(benzylidene)-2-aminophenol; L 2 ?=?N-(2,4-dichlorobenzylidene)-2,6-diethylbenzenamine, L 3 ?=?4-(2,4-dichlorobenzylide-neamino)phenol] have been synthesized using solvothermal methods and characterized by elemental analysis, spectroscopy and single crystal X-ray diffraction. The crystal structures of the free ligands were also determined. The ??-oxygen-bridged tetranuclear cyclometallated Pd(II) complex (1) contains four nearly planar units, in which PdII is four-coordinate. Complex 2 is a ??-chloro-bridged dinuclear cyclometallated Pd(II) complex, whereas complex 3 is mononuclear. The Heck reactions of bromobenzene with acrylic acid catalyzed by complexes 1?C3 have also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号