首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The stoichiometries, kinetics and mechanisms of oxidation of (NH2)2CS (1) and (Me2N)2CS (2) to the corresponding disulphides by CoIIIM (M = W12O40 ∞-) in aqueous HC1O4 were investigated. The reaction with (1) follows the empirical rate law- d[oxidant] = k[reductant][oxidant] where k = 12.5 ± 0.3 m−1 s−1 at 25° C, while that with (2) follows the equation- d[oxidant] = a + b [reductant] [reductant] [oxidant] where a = 5.4 × 104 M−1s−1 and b = 3.3 × 106M−2 s−1 at 25° C. Free radicals are important in the reactions and possible reaction mechanisms are suggested and discussed.  相似文献   

2.
Summary The kinetics of the oxidation of glutathione by diaquatetrakis(2,2-bipyridine)--oxo diruthenium(III) ion in aqueous HClO4 have been investigated. The reaction obeys the empirical rate law:-2d[oxidant]/dt = k[oxidant][reductant]/[H+] where k = 7.42 ± 0.40 × 10-3 s-1 at 25.5 °C, [H+] = 0.005–0.05 M and I = 1.0 M (LiClO4). Free radicals are important in the reaction and a mechanism consistent with the experimental results has been postulated.  相似文献   

3.
The rates and mechanism of the reaction of 12-tungstocobaltate(III) anion with thiocyanate and iodide ions have been examined in aqueous acidic solution and constant ionic strength I = 1.00M (LiClO4). The reactions follow second-order kinetics, i.e. first-order in both the oxidant and the reductant and the rate constants are found to be independent of hydrogen ions in the range [H+] = 0.10–1.00M. Outer-sphere mechanism is postulated for the systems based on the relative inertness of the oxidant and linear free energy relations are employed in demonstrating that in the reaction involving thiocyanate ion, the rate determining step is the diffusion apart of the product while the corresponding step in the iodide reaction is the electron transfer. The latter reaction is also catalysed by both bromide and chloride ions and this is rationalised in terms of possible stabilization of atomic iodine as product by these halide ions.  相似文献   

4.
Kinetics and Mechanisms of the Reductions of Two Isomeric μ-Cyanobenzoato-di-μ-hydroxo-bis[triamminecobalt(III)] Complexes by CrII and VII The Cr2+ and V2+ reductions of the binuclear μ-3-cyanobenzoato-di-μ-hydroxo-bis[triamminecobalt(III)] and its μ-4-cyanobenzoato analog have been studied by conventional spectrophotometric methods at 25°C, I = 1.0 M (LiClO4). The reactions are first order in oxidant and reductant, and independent of acid ([H+] = 0.04–0.97 M). Reduction of the first cobalt is rate determining. Outersphere mechanisms for all reductions are assigned on the basis of kCr : kV ratios (~0.02). The non capacity of cyanobenzoic acids to mediate electrons via an innersphere mechanism (at least for Cr2+ reductions) with attack of reductant at the remote nitrogen atom of the organic ligand is interpreted in terms of the non reducibility of the uncomplexed ligands.  相似文献   

5.
DFT calculations are performed on [RuII(bpy)2(tmen)]2+ ( M1 , tmen=2,3‐dimethyl‐2,3‐butanediamine) and [RuII(bpy)2(heda)]2+ ( M2 , heda=2,5‐dimethyl‐2,5‐hexanediamine), and on the oxidation reactions of M1 to give the C?C bond cleavage product [RuII(bpy)2(NH=CMe2)2]2+ ( M3 ) and the N?O bond formation product [RuII(bpy)2(ONCMe2CMe2NO)]2+ ( M4 ). The calculated geometrical parameters and oxidation potentials are in good agreement with the experimental data. As revealed by the DFT calculations, [RuII(bpy)2(tmen)]2+ ( M1 ) can undergo oxidative deprotonation to generate Ru‐bis(imide) [Ru(bpy)2(tmen‐4 H)]+ ( A ) or Ru‐imide/amide [Ru(bpy)2(tmen‐3 H)]2+ ( A′ ) intermediates. Both A and A′ are prone to C?C bond cleavage, with low reaction barriers (ΔG) of 6.8 and 2.9 kcal mol?1 for their doublet spin states 2 A and 2 A′ , respectively. The calculated reaction barrier for the nucleophilic attack of water molecules on 2 A′ is relatively high (14.2 kcal mol?1). These calculation results are in agreement with the formation of the RuII‐bis(imine) complex M3 from the electrochemical oxidation of M1 in aqueous solution. The oxidation of M1 with CeIV in aqueous solution to afford the RuII‐dinitrosoalkane complex M4 is proposed to proceed by attack of the cerium oxidant on the ruthenium imide intermediate. The findings of ESI‐MS experiments are consistent with the generation of a ruthenium imide intermediate in the course of the oxidation.  相似文献   

6.
We describe a new strategy to control the reactivity of Se?Se bond by using supramolecular chemistry of cucurbituril. We have demonstrated that selenocystamine (SeCy) and cucurbit[6]uril (CB[6]) can form a stable supramolecular complex (Ka=5.5×106 M ?1). Before complexation, the free Se?Se bond in SeCy is rather sensitive to redox stimuli and gets disrupted quickly with addition of reductant or oxidant. However, after binding with CB[6], the Se?Se bond becomes quite inert and hardly reacts with reductant or oxidant. One advantage of this supramolecular protection is that it can be applied in a wide pH range from weakly acidic to basic. Additionally, the supramolecular complex formed by SeCy and CB[6] can be reversibly dissociated simply with addition of Ba2+.  相似文献   

7.
Summary A promoting role of an oxidant, present in commercial 1-hexene, in the substitution of phosphine in the complex [RhCl(COD)(phosphine)] (1) where the phosphine is PPh3 or 1/2 BPS-2 [bis(diphenylphosphinoethyl)tetra-methyldisiloxane] and COD=cycloocta-1,5-diene, has been detected and explained. When [oxidant]>[(1)] two reaction steps are distinguished: an oxidation of phosphine to phosphine oxide with generation of [RhCl(COD)], followed by its fast dimerization, and an oxidation of the dimer to RhIII species. When [oxidant]<[(1)] the latter step is not observed and the reaction of [RhCl(COD)] with 1-hexene is favoured, particularly when an excess of phosphine (even at high oxidant concentration) is present. Most rate constants of the individual steps were evaluated.  相似文献   

8.
Summary The stoichiometry and kinetics of the oxidation of hydroxylammonium ion by the 12-tungstocobaltate(III) anion has been studied in hydrochloric acid medium. The ratio of mols of oxidant consumed per mol of hydroxylammonium ion is 11 and the evolution of nitrogen is confirmed. In the 0.1–1.0 mol dm–3 [H+] region, the oxidation is acid-independent and obeys the empirical rate law: –d[oxidant]/dt=k[oxidant] [reductant] where k=(3.51±0.18)×10–4 mol–1dm3s–1 at 22.4±0.1C and I=2.0 mol dm–3 (NaCl). Possible reaction steps and mechanism are suggested.  相似文献   

9.
The kinetics of oxidation of bis(2,4,6-tripyridyl 1,3,5-s-triazine)iron(II) by vanadium(V), periodate and iodate has been studied in acetate buffers by stopped-flow and spectrophotometric methods. The oxidation reaction of bis(2,4,6-tripyridyl 1,3,5-s-triazine)iron(II) by vanadium(V), periodate and iodate follows first order kinetics for the substrate and oxidant. Hydrogen ion has no significant effect on the rate. A generalized mechanism was proposed for these reactions and these reactions follow the rate law: Rate = k [oxidant] [Fe(tptz)2 2+].  相似文献   

10.
The reactivity of a mononuclear high‐spin iron(III)‐alkylperoxo intermediate [FeIII(t‐BuLUrea)(OOCm)(OH2)]2+( 2 ), generated from [FeII(t‐BuLUrea)(H2O)(OTf)](OTf) ( 1 ) [t‐BuLUrea=1,1′‐(((pyridin‐2‐ylmethyl)azanediyl)bis(ethane‐2,1‐diyl))bis(3‐(tert‐butyl)urea), OTf=trifluoromethanesulfonate] with cumyl hydroperoxide (CmOOH), toward the C?H and C=C bonds of hydrocarbons is reported. 2 oxygenates the strong C?H bonds of aliphatic substrates with high chemo‐ and stereoselectivity in the presence of 2,6‐lutidine. While 2 itself is a sluggish oxidant, 2,6‐lutidine assists the heterolytic O?O bond cleavage of the metal‐bound alkylperoxo, giving rise to a reactive metal‐based oxidant. The roles of the urea groups on the supporting ligand, and of the base, in directing the selective and catalytic oxygenation of hydrocarbon substrates by 2 are discussed.  相似文献   

11.
The aqueous polymerization of acrylamide initiated by the glycolic acid/Ce4+ redox system was studied in sulfuric acid medium at 35 ± 0.2°C under a nitrogen atmosphere. The initiation was carried out by the free radical generated in the decomposition of the complex formed between the oxidant and the reductant. The monomer disappearance was found to be proportional to [GA]0,89[Ce4+]0.57[M]1.0, and the rate of ceric ion disappearance was found to be directly proportional to [Ce4+] and [GA] but independent of [M]. The activation energy of the system was found to be 7.21 kcal/deg/mol. The molecular weight of polyacrylamide increased with increasing [monomer] and decreased with increasing [catalyst]. The effect of pH was also studied in the pH range 2.22 to 1.44.  相似文献   

12.
The kinetics of oxidation of methyl, ethyl, n-propyl, isopropyl, and n-butyl acetates to acetic acid and the corresponding aldehyde by the title oxidant in aqueous HCl medium at 40°C has been studied. The reaction shows first-order with respect to [oxidant] and fractional orders in [H+] and [ester]. An isokinetic relationship was observed with β = 374 K indicating enthalpy as the rate controlling factor. Attempts have been made to arrive at a linear free energy relationship through the Taft treatment. Electron releasing groups in the ester moiety increase the rate with ρ* = ?9.88. A two-pathway mechanism, consistent with the observed kinetic data, has been proposed. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Two mononuclear ruthenium complexes [RuL(pic)3] ( 1 ) and [RuL(bpy)(pic)] ( 2 ) (H2L=2,6‐pyridinedicarboxylic acid, pic=4‐picoline, bpy=2,2′‐bipyridine) have been synthesized and fully characterized. Both complexes could promote water oxidation chemically and photochemically. Compared with other known ruthenium‐based water oxidation catalysts using [Ce(NH4)2(NO3)6] (CeIV) as the oxidant in solution at pH 1.0, complex 1 is one of the most active catalysts yet reported with an initial rate of 0.23 turnover s?1. Under acidic conditions, the equatorial 4‐picoline in complex 1 dissociates first. In addition, ligand exchange in 1 occurs when the RuIII state is reached. Based on the above observations and MS measurements of the intermediates during water oxidation by 1 using CeIV as oxidant, [RuL(pic)2(H2O)]+ is proposed as the real water oxidation catalyst.  相似文献   

14.
The kinetics of the bromate oxidation of tris(1,10-phenanthroline)iron(II) (Fe(phen)32+) and aquoiron(II) (Fe2+ (aq)) have been studied in aqueous sulfuric acid solutions at μ = 1.0M and with Fe(II) complexes in great excess. The rate laws for both reactions generally can be described as -d [Fe(II)]/6dt = d[Br?]/dt = k[Fe(II)] [BrO?3] for [H+]0 = 0.428–1.00M. For [BrO?3]0 = 1.00 × 10?4M. [Fe2+]0 = (0.724–1.45)x 10?2 M, and [H+]0 = 1.00M, k = 3.34 ± 0.37 M?1s?1 at 25°. For [BrO?3]0 = (1.00–1.50) × 10?4M, [Fe2+]0 = 7.24 × 10?3M ([phen]0 = 0.0353M), and [H+]0 = 1.00M, k = (4.40 ± 0.16) × 10?2 M?1s?1 at 25°. Kinetic results suggest that the BrO?3-Fe2+ reaction proceeds by an inner-sphere mechanism while the BrO?3-Fe(phen)32+ reaction by a dissociative mechanism. The implication of these results for the bromate-gallic acid and other bromate oscillators is also presented.  相似文献   

15.
Oxidation of the trans-[Cr(cyca)(OH)2]+ complex, where cyca = meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by [Fe(CN)6 ]3- ion in strongly alkaline media, leading to [CrV O(cycaox )]3+ ion, has been studied using electronic and e.p.r. spectroscopy. The kinetics of the CrIII → CrIV transformation have been studied using a large excess of the reductant and OH- ion over the oxidant. The reaction is a second order process: first order in [CrIII] and [FeIII] at constant [OH-]. The second order rate constant is higher than linearly dependent on the OH- concentration. The mechanism of the reaction has been discussed. A relatively inert intermediate chromium(V) species was detected based on characteristic bands in the visible region and the e.p.r. signal at giso = 1.987 for the systems where an excess of oxidant was used. The hyperfine structure of the main e.p.r. signal is consistent with the d1 -electron interactions with four equivalent nitrogen nuclei and [CrV = O(cycaox)]3+ formula, where cycaox = oxidized cyca, can be postulated for the intermediate CrV complex.  相似文献   

16.
《Polyhedron》1987,6(6):1329-1335
The preparation and properties of cationic rhodium and iridium complexes of types [M(diolefin)L2](ClO4) and [M(diolefin)L(PPh3)](ClO4) [M = Rh, diolefin = 1,5-cyclooctadiene (COD) or 2,5-norbornadiene; M = Ir, diolefin = COD; L = phosphine sulphide] are described. The complexes have been characterized by IR, 1H NMR and 31P NMR spectroscopy. The use of [M(diolefin)L2](ClO4) as catalyst precursors in homogeneous hydrogenation of olefins has been studied.  相似文献   

17.
High-resolution mass spectrometry (HRMS), hybrid tandem mass spectrometry (MS/MS) (EBqQ), and photoelectron-photoion coincidence (PEPICO) experiments were conducted to examine a possible ortho-ortho effect resulting in a novel [M - 35]+ fragment ion in 2-alkyl-4, 6-dinitrophenols. For compounds having ethyl or larger alkyl substituents, [M35]+ was observed only when [M - 18]+ ions were present, with the ortho nitro group being involved in the reaction to [M- 35]+. For [M - 18]+ and [M - 35]+, HRMS results were consistent with losses of H2O and H2O + OH, respectively, whereas MS/MS results indicated a sequential reaction due to metastable dissociations. The appearance energy determined by PEPICO for [M - 35]+ was found to be greater than the appearance energy for [M - 18]+, thus supporting a sequential reaction. 69–75).  相似文献   

18.
Summary Complexes [VO(Htaptsc)SO4] and [M(Htaptsc)2Cl2] [M=MnII, NiII, CdII or HgII], Cu(Htaptsc)Cl2 and [M(Htaptsc)Cl2] [M=CoII or ZnII], and deprotonated compounds Co(taptsc)2 and [M(taptsc)2] [M=VIVO, MnII, NiII, CuII or ZnII] [Htaptsc=4-(2-thiazolyl)-1-(2-acetylpyridine)thiosemicarbazone] have been characterized by elemental analyses, electrical conductivity and magnetic susceptibility measurements and electronic, e.s.r. and i.r. spectroscopy. The bonding sites of Htaptsc and the bonding and stereochemistry of the complexes are discussed.  相似文献   

19.
High valent metal(IV)‐oxo species, [M(?O)(MeIm)n(OAc)]+ (M = Mn–Ni, MeIm = 1‐methylimidazole, n = 1–2), which are relevant to biology and oxidative catalysis, were produced and isolated in gas‐phase reactions of the metal(II) precursor ions [M(MeIm)n(OAc)]+ (M = Mn–Zn, n = 1–3) with ozone. The precursor ions [M(MeIm)(OAc)]+ and [M(MeIm)2(OAc)]+ were generated via collision‐induced dissociation of the corresponding [M(MeIm)3(OAc)]+ ion. The dependence of ozone reactivity on metal and coordination number is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The kinetics of oxidation of some monosaccharides viz., D-ribose, D-xylose, and D-arabinose, D-glucose, D-fructose, D-galactose, 2-deoxyglucose, and α-methyl glucopyranoside by MnO42? in aqueous alkaline medium have been studied. The rate of oxidation has been found to be first-order both with respect to [oxidant] and [sugar]. The rate is independent of [OH?] under experimental conditions of [OH?] > 0.5 M where the oxidant is stable. The effect of ionic strength is negligible on the rate. A mechanism involving the formation of a 5-membered cyclic intermediate complex between MnO42? and 1,2-enediol form of the sugar is proposed. The intermediate complex decomposes to give products in the subsequent slow step. The involvement of 1,2-enediol form receives support from the reaction of α-methyl glucopyranoside, which exists in ring structure in alkaline solution reacting much slower than glucose with MnO42? under similar conditions. Second-order rate constant k″ and activation parameters have been evaluated. The series of reactions exhibits a clear demonstration of applicability of isokinetic phenomenon where Arrhenius plots for all the reactions are found to intersect at a common point (295 K). © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号