首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A device has been developed for the measurement of copper(II) ions (Cu++) in aqueous medium. The device reported here is an electrochemical transistor that consists of two platinum electrodes separated by 100-μm spacing and bridged with an anodically grown polycarbazole film. The undoped polycarbazole film is observed to be highly selective for the Cu(II) ions. In a completed device, the conductivity of the polycarbazole film changes on addition of Cu (II)ions. This change in conductivity is attributed to the conformational changes in the polymer phase on occupation of the Cu(II) ions, without affecting electron/proton transfer. The device turns on by adding 2.5×10−6 M Cu(II) ions and reaches a saturation region above a concentration of 10−4 M Cu(II) ions. In this concentration range, the plot of I D vs log[Cu(II)] is linear. The selectivity of the device for other metal ions such as Cu(I), Co(II), Fe(II), Fe(III), Zn(II), and Pb(II) is also studied.  相似文献   

2.
A fluorogenic Cu(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC) of 3-azido-7-hydroxycoumarin has been used to detect metal ions in solution. The formation of a highly fluorescent triazole product signals the presence of Cu(I) or Cu(II) ions at micromolar concentrations. CuAAC can be modified by using an exogenous ligand like EDTA to detect and quantify Zn(II), Ca(II), and Cd(II) ions at micromolar concentrations by an allosteric mechanism. The increase in the formation of the triazole product is regulated by the release of Cu(II) from the Cu(II)-EDTA complex by the addition of a second metal ion, the allosteric effector.  相似文献   

3.
We report the synthesis and physical studies of a novel porphyrazine (pz) dimer [1[Ni,Cu]]2, which has Ni(II) ions incorporated into the pz cores and is linked by two Cu(II) ions coordinated to bis(picolinamide) chelates attached to the pz periphery. [1[Ni,Cu]]2 was prepared from precursor pz 2 with a selenodiazole ring fused to the pz core. This ring was deprotected to form the diamino-pz 3, which reacted with 2 mol of picolinoyl chloride hydrochloride to form pz 1[2H,2H], with peripheral bis(picolinamide) chelates; this was metalated to form [1[Ni,Cu]]2. The crystal structures of 1[2H,2H] and [1[Ni,Cu]]2 are presented. The latter is a dimer in which parallel, face-to-face pz's with an average separation of 3.30 angstroms are linked through the peripheral picolinamide ligands by a pair of peripheral Cu(II) ions. Each Cu(II) is coordinated with distorted square-planar geometry by a picolinamide from each pz. In this report, we focus on the interaction of these two peripheral Cu(II) ions. We discuss the preparation and magnetic properties of the pz dimer complex [1[Ni,Cu]]2 with two Cu(II) ions in the peripheral chelate but a diamagnetic metal ion Ni(II) in the pz core. Although [1[Ni,Cu]]2 contains two Cu(II) ions (S = 1/2), we could detect no electron paramagnetic resonance signal, which suggests very strong antiferromagnetic exchange between those two Cu(II) ions. Temperature-dependent magnetic susceptibility measurement gives an exchange splitting between the S = 0 ground state and the excited triplet state of delta = 660 cm(-1).  相似文献   

4.
Brajter K  Miazek I 《Talanta》1981,28(10):759-764
The use of glycine as a complexing agent in acetone-water medium for the separation of metal ions with Chelex 100 chelating resin has been investigated. The affinity of metal ions for Chelex 100 in the presence of glycine in acetone-water and aqueous medium was determined as a function of acidity and it was established that the presence of acetone is an essential factor in production of differentiation in the selectivity and for consequent separation of a number of mixtures of metal ions [Cu(II)Co(II); Cu(II)Al(III)Pb(II); Cu(II)Ni(II)Co(II); Cu(II)Ni(II)Pb(II)]. The mechanism of the effect of acetone is discussed.  相似文献   

5.
Liu Y  Ingle JD 《Talanta》1989,36(1-2):185-192
Sample solutions titrated with Cu(2+) ions are passed sequentially through two ion-exchange columns in an automated flow system. The first column is packed with Chelex-100 resin and retains Cu(2+) ions that are free or derived from copper complexes that dissociate in the column. The second column is packed with AG MP-1 anion-exchange resin and retains negatively charged Cu(II) complexes. The retained copper species are then eluted from the columns and determined on-line with a flame atomic-absorption spectrophotometer. It is necessary to correct for a small fraction of free Cu(2+) ions that pass through the first column and are retained by the second column. The Cu(II)-complexing capacity of sample solutions is determined from plots of the concentration ratio of free Cu(2+) ions to Cu(II) complexes vs. the concentration of free Cu(2+) ions. Conditional stability constants of the copper complexes are also estimated from these plots. The complexing capacity of sample solutions is also determined rapidly by measuring the concentration of complexed Cu(II) after spiking the sample with an excess of Cu(2+) ions. The sample solutions tested were 4.0muM NTA, 4.0-mg/l. humic acid, and a river water.  相似文献   

6.
The behaviour of some Schiff bases in the presence of metal ions is very selective in complex formation. In this study, new, selective and easily prepared adsorbent materials have been developed. Multiwalled carbon nanotubes (MWCNTs) are quite suitable as supporting material for preparation of new solid phase adsorbents modified with Schiff bases due to their selective nature. Different Schiff bases were designed and synthesised as adsorbent agents for Ni(II) and Cu(II) ions, according to the literature, and MWCNTs were modified with these Schiff bases. The modification of CNTs was performed by adsorption from the alcoholic solution of Schiff base. The measurements of Ni(II) and Cu(II) ions were carried out using ICP-MS. Different parameters such as pH, model and eluent solution flow rates, eluent type, amount of ligand, sample volume and effect of foreign ions, which have an effect upon recovery of analytes, were investigated. The obtained results indicated that enrichment can be done with six modified adsorbent materials for Cu(II) at pH 9 and two modified adsorbent materials for Ni(II) at pH 8. It was concluded that four adsorbent materials were selective only for the enrichment of Cu(II). Merely one modified adsorbent material was noneligible for the enrichment of Cu(II) and Ni(II). The solid phase adsorbents prepared by modification with two of the Schiff bases used in this study showed an enrichment factor of 80 for both metal ions, whereas the solid phase adsorbents prepared by modification with four of the Schiff bases showed an enrichment factor of 40 for Cu(II) ions. The confirmation of the developed method was tested with certified reference materials with satisfactory results.  相似文献   

7.
A device has been developed for the measurement of copper(II) ions (Cu2+) in aqueous medium. The device reported here is an electrochemical transistor which consists of two platinum electrodes separated by 100 μm spacing and bridged with an anodically grown film of polycarbazole. Polycarbazole film (undoped form) is observed to be highly selective for the Cu(II) ions. In a completed device, the conductivity of the polycarbazole film changes on addition of Cu(II) ions. The change in conductivity is attributed to the conformational changes in the polymer phase on occupation of the Cu(II) ions, without affecting electron/proton transfer. The device turns on by adding 2.5 × 10−6 M Cu(II) ions and reaches a saturation region beyond 10−4 M Cu(II) ion concentrations. In the above concentration range, the device response [I D vs. log Cu(II) ion concentration] is linear. The selectivity of the device for other metal ions such as Cu(I), Ni(II), Co(II), Fe(II), Fe(III), Zn(II) and Pb(II) is also studied. Received: 6 April 1999 / Accepted: 20 August 1999  相似文献   

8.
Preconcentration of copper on ion-selective imprinted polymer microbeads   总被引:5,自引:0,他引:5  
Molecular recognition-based separation techniques have received much attention in various fields because of their high selectivity for target molecules. Molecular imprinting has been recognized as a promising technique for the preparation of such systems. In this study, we have prepared a novel molecular imprinted adsorbent to remove heavy metal ions with high selectivity. The Cu(II)-imprinted poly(ethylene glycol dimethacrylate–methacryloylamidohistidine/Cu(II)) (poly(EGDMA–MAH/Cu(II))) microbeads with an average size of 150–200 μm were prepared by dispersion polymerization. These Cu(II) imprinted microbeads were used in the adsorption–desorption of copper(II) ions from metal solutions. Adsorption equilibria was achieved in about 1 h. The maximum adsorption of Cu(II) ions onto imprinted microbeads was about 48 mg/g. The pH significantly affected the adsorption capacity of imprinted microbeads. The observed adsorption order under competitive conditions was Cu(II) > Zn(II) > Ni(II) > Co(II) in mass basis. The imprinted microbeads can be easily regenerated by 0.1 M EDTA solution with higher effectiveness. The imprinted microbeads showed excellent selectivity for the target molecule (i.e. Cu(II) ions due to molecular geometry). These features make imprinted microbeads very good candidate for selective removal of Cu(II) ions at high adsorption capacity. Detection limit was increased at least 1000-folds with the preconcentration approach using the imprinted microbeads. The method was also applied to certified reference and seawater samples.  相似文献   

9.
Safavi A  Rastegarzadeh S 《Talanta》1995,42(12):2039-2042
1,2-Bis methyl (2-aminocyclopentene carbodithioate) ethane is an excellent synthetic carrier for efficient and specific transport of Cu(II) ions through a liquid membrane and has the ability to transport Cu(II) ions uphill.  相似文献   

10.
The redox properties of Cu(II) species in FAU matrices have been studied by temperature programmed reduction (TPR) in hydrogen and by XAFS analysis of the products obtained after (stationary) reduction treatments at various temperatures. The influence of the matrix polarity was investigated by comparing aluminosilicate FAU (Y zeolite) with siliceous FAU. In addition, the influence of Zn ions on the reduction process was studied. It was found that both the matrix composition and the presence of zinc ions exert a significant influence on the course of the reduction. In Y zeolite, heat treatment which is known to transfer Cu(II) ions to remote sites (SI, SI', SII') affects the reduction process dramatically. Cu(II) is most easily reduced in siliceous FAU, but the reduction proceeds in two clearly separated steps. Between these steps, small Cu(0) nuclei coexist with Cu(I) species, apparently unable to activate hydrogen for the autocatalytic reduction of the remaining Cu ions. The polarity of the matrix causes an upshift of the Cu(II) reduction temperature (in TPR by ca. 80 K for sites in the large cavity, by ca. 105 K for the remote sites), but the reduction of Cu(I) depends strongly on the simultaneous presence of Cu(0) and on its ability to activate hydrogen and induce an autocatalytic reduction mechanism. While Cu(I) species in the large cavities are easily reduced to the metal, tending to segregate from the zeolite lattice, Cu(I) ions in remote sites are strongly stabilized towards further reduction and even traces of Cu metal form only at very high temperatures. In the presence of zinc ions, the Cu metal particles formed were found to be smaller than in zinc-free samples.  相似文献   

11.
Metal ion specificity studies of divinylbenzene (DVB)-crosslinked polyacrylamide-supported glycines in different structural environments were investigated. The effect of the degree of crosslinking on the specific rebinding of the desorbed metal ion was investigated towards Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal ion-desorbed resins showed specificity for the desorbed metal ion and the specificity characteristics increases with an increasing degree of the crosslinking agent. The polymeric ligands and metal complexes were characterized by IR, UV-visible and EPR spectra, and by SEM analysis. The swelling and solvation characteristics of the crosslinked polymers, polymeric ligands and metal complexes, the effect of the pH dependence on metal ion binding and rebinding and the kinetics of metal ion binding and rebinding were also followed. The complexation resulted in the downfield shift of the carboxylate peak in the IR spectra. The EPR parameters are in agreement with a distorted tetragonal geometry. The Cu(II) ion-desorbed resins selectively rebinds Cu(II) ions from a mixture of Cu(II) and Co(II) and Cu(II) and Ni(II) ions. The resin could be regenerated several times without loss of capacity and effective for the specific and selective rebinding of Cu(II) ions.  相似文献   

12.
Cu(II)/EDTA adsorption onto TiO2 has been studied with a variation of pH, ionic strength, and type of background electrolytes. Cu(II) adsorption onto TiO2 increased as ionic strength increased when NaClO4 was used as a background electrolyte. This can be explained by the increase of exp(-FPsi/RT) as a part of the electrostatic correction within a surface complexation model. Model predictions described experimental adsorption trends. Types of background anions (ClO4, Cl, NO2, NO3, SO3, and PO4) did not affect adsorption trends and adsorption amounts of Cu(II) onto TiO2. However, different trends were observed with various types of background ions used as ionic strength in EDTA and Cu(II)-EDTA adsorption. EDTA adsorption was decreased by using Na2SO3 and Na3PO4 as background ions, while NaClO4, NaCl, NaNO2, and NaNO3 showed negligible interference on the EDTA adsorption, which matched well with model predictions. The presence Na2SO3 and Na3PO4 also interfered with Cu(II)-EDTA adsorption, to a somewhat greater extent compared to EDTA adsorption, especially at lower pH. This interference was also noted in Cu(II)-EDTA adsorption with a variation of Cu(II)-EDTA concentration at constant ionic strength (3 x 10(-3) M) by using Na2SO3 and Na3PO4, especially at lower ratios of Cu(II)-EDTA to Na2SO3 and Na3PO4. These results suggest that the ratio of Cu(II)-EDTA to Na2SO3 and Na3PO4 is an important factor for the controlling of competition between these background ions and Cu(II)-EDTA onto TiO2. Model prediction generally matched well with experimental adsorption using NaClO4, NaCl, NaNO2, and NaNO3 as backgrounds ions, while a severe deviation was observed in the presence of Na2SO3 and Na3PO4. These results suggest that the mobility of copper ions as Cu(II)-EDTA can be increased from polluted area in the presence of multivalent background ions, especially as the ratio of adsorbates/background ions decreased.  相似文献   

13.
In contrast to previous electron capture dissociation (ECD) studies, we find that electron transfer dissociation (ETD) of Cu(II)–peptide complexes can generate c- and z-type product ions when the peptide has a sufficient number of strongly coordinating residues. Double-resonance experiments, ion-molecule reactions, and collision-induced dissociation (CID) prove that the c and z product ions are formed via typical radical pathways without the associated reduction of Cu(II), despite the high second ionization energy of Cu. A positive correlation between the number of Cu(II) binding groups in the peptide sequence and the extent of c and z ion formation was also observed. This trend is rationalized by considering that the recombination energy of Cu(II) can be lowered by strong binding ligands to an extent that enables electron transfer to non-Cu sites (e.g., protonation sites) to compete with Cu(II) reduction, thereby generating c/z ions in a manner similar to that observed for protonated (i.e., nonmetalated) peptides.  相似文献   

14.
Oshio H  Yamamoto M  Ito T 《Inorganic chemistry》2002,41(22):5817-5820
Cyanide-bridged molecular squares of [Fe(II)(2)Cu(II)(2)(mu-CN)(4)(dmbpy)(4)(impy)(2)](ClO(4))(4).4CH(3)OH.C(6)H(6) (1) and of [Fe(III)(2)Cu(II)(2)(mu-CN)(4)(dmbpy)(4)(impy)(2)](ClO(4))(6).4CH(3)OH.4H(2)O (2) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine; impy = 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxy) were prepared. In the squares of 1 and 2, the Fe(II/III) (low spin) and Cu(II) ions are alternately bridged by the cyanide groups, in which the cyanide carbon atoms coordinated to the Fe(II) ions and Cu(II) ions are coordinated by imino nitroxide. Magnetic susceptibility measurements for 1 and 2 revealed that the Cu(II) ion and imino nitroxide are ferromagnetically coupled with a fairly strong coupling constant (J(Cu-radical) > 300 K) and act as triplet species. In 1 the Cu(II)-radical moieties are magnetically separated by the Fe(II) ions. In the square of 2, dpi (Fe(III)), dsigma (Cu(II)), and ppi (imino nitroxide) spins are alternately assembled, and this situation allowed the square to have an S = 3 spin ground state. The exchange coupling constant of Fe(III) and the Cu(II)-radical moiety in 2 was estimated to be J = 4.9 cm(-1) (H = -2JSigmaS(Fe).S(Cu-radical)).  相似文献   

15.
桥联双核铜席夫碱配合物的合成和晶体结构   总被引:1,自引:0,他引:1  
王瑾玲  李爱秀  贾永金  张姝明 《化学学报》2004,62(23):2329-2333
利用1-苯基-3-甲基-5-吡唑啉酮和水杨酰胺制备了PMP缩水杨酰胺席夫碱及其铜(Ⅱ ) 配合物,根据红外和紫外光谱数据表征了它的结构.利用X射线衍射方法研究了配合物的晶体结构,结果表明配合物为桥联双核铜结构,铜原子为五配位的四方锥构型,每个铜原子与一个配体中吡唑啉酮上的氧原子、席夫碱上的N原子、水杨酰的酚氧原子和溶剂DMF中的氧原子配位,而相邻配体中水杨酰的酚氧原子也参加配位并将两个铜原子连接起来形成桥联双核铜配合物,两个Cu(Ⅱ )原子间的距离为0.3268 nm.芳环堆积作用和分子内及分子间氢键的存在增强了配合物分子的稳定性.  相似文献   

16.
We demonstrate a sensitive and rapid colorimetric assay for selective detection of copper ions based on the strong coordination between Cu(II) ions and the tetrahydroxyaurate anions [Au(OH)4]? on the surface of thermally treated bare gold nanoparticles (GNPs). The method for making the unmodified GNPs is simple and results in a nanomaterial with a highly specific response to Cu(II). The thermal treatment of the bare GNPs and the recognition of Cu(II) ions is accomplished in a single step within 5 min. The presence of Cu(II) causes the color to change from red to purple-blue. The limit of detection (LOD) is 0.04 μM of Cu(II) when using UV–vis spectrometry and ratioing the absorbances at 650 and 515 nm, respectively. The method also is amenable to bare eye (visual) inspection and in this case has an LOD of 2.0 μM of Cu(II).
Figure
Due to the strong coordination of Cu(II) ions with the tetrahydroxyaurate anions [Au(OH)4]- on the thermally treated bare GNPs, Cu(II) can directly induce the aggregation of the GNPs, resulting in an obvious color change from wine-red to purple-blue.  相似文献   

17.
This communication will describe the electron doping effect into Ni(III) complexes by Cu(II) ions, [Ni(1-x)Cu(x)(chxn)(2)Br]Br(2-x) (x = 0.038 and 0.101) by using an electrochemical oxidation method. A drastic increase of electrical conductivity as well as a new absorption band around 0.5 eV in single crystal reflectance spectra was observed by doping Cu(II) ions, indicating the electron doping was successfully made. An ESR result shows unpaired electrons locate in the d(x2-y2) orbitals of Cu(II) and have almost no interaction with those of other ions.  相似文献   

18.
The kinetics of the dopaquinone cyclization in the absence and presence of Cu(II) ions at pHs from 6 to 7.4 has been studied by cyclic, normal and reverse pulse voltammetry. Distinct inhibition of the dopaquinone ring closure reaction was observed in the. presence of Cu(II) ions. At pHs below 6 this effect is attributed to the formation of amino acid type complexes. At pH 7.4 the amino acid type and the catechol type Cu(II)-DOPA chelates coexist, and simultaneous interactions of copper ions with both ends of the DOPA molecule result in the association of the Cu(II)-DOPA complexes. These effects, observed at physiological pH, suggest that the rate of melanin formation is affected by the presence of Cu(II) ions.  相似文献   

19.
Adsorption behavior of copper and cyanide ions at TiO2-solution interface   总被引:2,自引:0,他引:2  
Adsorption of both copper and cyanide ions in the absence and in the presence of their complexes at TiO2-solution interfaces was investigated. The objective of this study was to demonstrate the possibility of removing heavy metal ions, exemplified by Cu(II), from aqueous solution in the presence of a ligand, e.g., CN-. Several parameters such as pH and Cu(II) and CH- ion concentration that may affect the magnitude of copper and cyanide adsorption were studied. The equilibrium of Cu-CN speciation distribution in solution and stability constant calculations have been investigated to determine the adsorption behavior of Cu(II). Results revealed that free Cu(II) ions (in the absence of CN-) were completely separated at pH8, while the adsorption of free cyanide ions, in the absence of Cu(II), reached a maximum value of 48% at pH 7. For Cu-CN complexes, the presence of CN- in excessive amount with respect to Cu(II) retarded the adsorption of Cu(II). This is attributed to the formation of multivalent anionic cyano-copper complexes such as Cu(CN)2-(3) and Cu(CN)(3-)4.  相似文献   

20.
Four highly soluble square-planar Cu(II) and Ni(II) complexes of siloxy-salens (2SiCu, 2SiNi) and hydroxy-salens (2Cu, 2Ni) have been synthesized. An X-ray crystal structure analysis was performed on 2SiCu, 2SiNi, and 2Ni. The compounds have been investigated by cyclic voltammetry, UV-vis-NIR spectroelectrochemistry, and EPR spectroscopy. According to these results, the monooxidized species [2SiCu]+ and [2SiNi]+ are to be classified as Robin-Day class II and III systems, respectively. Magnetic measurements on the dinuclear (PMDTA)Cu(II) complex 1Cu2 x (PF6)2 with deprotonated 1,4-dihydroxy-2,5-bis(pyrazol-1-yl)-benzene (1) linker revealed antiferromagnetic coupling between the two Cu(II) ions thereby resulting in an isolated dimer compound. Coordination polymers [1Cu]n(H2O)(2n) of Cu(II) ions and bridging p-hydroquinone linkers were obtained from CuSO4 x 5 H2O and 1,4-dihydroxy-2,5-bis(pyrazol-1-yl)benzene. X-ray crystallography revealed linear chains running along the crystallographic a-direction and stacked along the b-axis. Within these chains, the Cu(II) ions are coordinated by two pyrazolyl nitrogen atoms and two p-hydroquinone oxygen atoms in a square-planar fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号