首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1-Butenyl glycidyl ether was prepared in high yield by the ruthenium-catalyzed isomerization of crotyl glycidyl ether. This ambifunctional monomer underwent facile photoinitiated cationic polymerization using diaryliodonium salts as photoinitiators. The progress of the polymerizations was followed using Fourier transform real-time infrared spectroscopy, and the reactivity of this monomer under various experimental conditions determined. A comparison of the rates of polymerization of the epoxy and vinyl ether groups suggested that the polymerization may take place by an intramolecular cyclization process that generates cyclic acetal units in the backbone of the polymer. It was further shown that crotyl glycidyl ether undergoes regioselective cationic ring-opening polymerization to give a polyether, and then isomerization was carried out to give an oligomer bearing reactive pendant 1-butenyl ether groups. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1179–1187, 1998  相似文献   

2.
The radical polymerization behavior of alkoxyallene containing the epoxy group, allenyl glycidyl ether ( I ), was investigated to obtain the more reactive polymer. The desired polymer was successfully synthesized only by the copolymerization of I with acrylonitrile (AN) at 80°C in DMF, although the homopolymer of I was converted to the crosslinked polymer during its purification. The same number of epoxy and two kinds of methylene groups were simultaneously introduced onto the polymer through propagating allyl radical. The obtained copolymer, therefore, was readily converted to the gelled polymer with methods such as heating and treating with Lewis acids or amines. Further, the copolymer containing two kinds of methylene groups was prepared similarly from methoxyallene ( II ) and AN, and was also converted to the crosslinked polymer with the cationic catalyst. These copolymers of I or II with AN will be expected to be new types of reactive polymers.  相似文献   

3.
Inverse vulcanization provides a simple, solvent-free method for the preparation of high sulfur content polymers using elemental sulfur, a byproduct of refining processes, as feedstock. Despite the successful demonstration of sulfur polymers from inverse vulcanization in optical, electrochemical, and self-healing applications, the mechanical properties of these materials have remained limited. We herein report a one-step inverse vulcanization using allyl glycidyl ether, a heterobifunctional comonomer. The copolymerization, which proceeds via reactive compatibilization, gives an epoxy cross-linked sulfur polymer in a single step, as demonstrated through isothermal kinetic experiments and solid-state 13C NMR spectroscopy. The resulting high sulfur content (≥50 wt%) polymers exhibited tensile strength at break in the range of 10–60 MPa (70–50 wt% sulfur), which represents an unprecedentedly high strength for high sulfur content polymers from vulcanization. The resulting high sulfur content copolymer also exhibited extraordinary shape memory behavior along with shape reprogrammability attributed to facile polysulfide bond rearrangement.

A one-step bulk polymerization between elemental sulfur and allyl glycidyl ether yields epoxy cross-linked sulfur polymers with unprecedentedly high mechanical strength and rapid shape-memory performance.  相似文献   

4.
The ambifunctional monomer, 1-propenyl glycidyl ether, was prepared from allyl glycidyl ether, by a ruthenium-catalyzed isomerization reaction in high yield. 1-Propenyl glycidyl ether undergoes facile photoinduced cationic polymerization to yield a crosslinked polymer. The structure of this polymer was studied using 1H- and, 13C-NMR spectroscopies and employing well-characterized related polymers as models. The model polymers were prepared by the cationic polymerization of allyl glycidyl ether with BF3OEt2 followed by isomerization of the pendant allyl groups by a ruthenium catalyst. Subsequently, the resulting polyether-bearing pendant 1-propenyl ether groups was subjected to a diaryliodonium salt-photoinitiated polymerization. A comparison of the spectra of the polymers indicated the presence of cyclic acetal units in the polymer backbone. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
报道了一种基于聚(苯乙烯-二乙烯基苯)微球(PS-DVB)的表面共聚氢氧根选择性阴离子固定相。它以烯丙基缩水甘油醚(AGE)为功能单体、通过自由基引发直接与PS-DVB微球表面残留的悬挂双键共聚,再通过醇胺开环得到。考察了两种醇胺试剂对分离的影响;扫描电镜、红外光谱、元素分析表征结果表明:表面共聚反应成功在微球表面引入季胺基团,且对微球理化性质无显著影响;所得固定相表现氢氧根淋洗液的高选择性,对常规无机阴离子表现出良好的分离性能(分离度>1.5)和运行稳定性(保留时间的相对标准偏差<1.13%),其实用性通过分析茶叶样品中无机阴离子进行了展示。  相似文献   

6.
The processes occurring during the modification of epoxy polymers by various polymorphic aluminum oxide modifications (γ-AlO(OH), γ-Al2O3, α-Al2O3) with epoxy groups were studied by the methods of IR Fourier spectroscopy, chemical analysis, and differential scanning calorimetry (DSC) by an example of a model compound (phenyl glycidyl ether). Two types of interactions were revealed: a direct chemical reaction of phenyl glycidyl ether with the surface hydroxy groups of alyminum oxide, and phenyl glycidyl ether homopolymerization. By processing by graphical method the data of chemical analysis on the diminishing in amount of epoxy groups in the course of the polycondensation reaction the value of activation energy 106–110 kJ mol−1 of the process of phenyl glycidyl ether interaction with aluminum γ-oxide was determined.  相似文献   

7.
Poly(allyl glycidyl ether) and poly(allyl glycidyl ether‐co‐epichlorohydrin) were prepared by monomer‐activated anionic polymerization. Quantitative and controlled polymerization of allyl glycidyl ether (AGE) giving high molar mass polyether was achieved in a few hours at room temperature in toluene using tetraoctylammonium salt as initiator in presence of an excess of triisobutylaluminum ([i‐Bu3Al]/[NOct4Br] = 2?4). Following the same polymerization route, the copolymerization of AGE and epichlorohydrin yields in a living‐like manner gradient‐type copolymers with controlled molar masses. Chemical modification of the pendant allyl group into cyclic carbonate was then investigated and the corresponding polymers were used as precursors for the isocyanate‐free synthesis of polyurethane networks in presence of a diamine. Formation of crosslinked materials was followed and characterized by infrared and differential scanning calorimetry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
The boron trifluoride tetrahydrofuranate-catalyzed cationic polymerization of allyl glycidyl ether in carbon tetrachloride proceeds via an oxirane cycle to form initially cyclic products and, at later stages, high-molecular-mass products. In the case of 1,2-dimethoxyethane, the polymerization of allyl glycidyl ether occurs via insertion of the monomer into a dissociated bond of a Lewis acid-dimethoxyethane complex and yields a linear polymer with end methoxy groups.  相似文献   

9.
Copolymerization of epichlorohydrin with allyl glycidyl ether under the action of boron trifluoride tetrahydrofuranate in diethyl ether and dimethoxyethane was studied under the conditions of synthesis of alkyl ether and diols where water was used to produce terminal hydroxy groups. 1H NMR spectroscopy showed the formation of a copolymer. The integrated intensity ratio for the signals related to allyl and other groups showed that the rate of allyl glycidyl ether introduction into the copolymer is higher than that of epichlorohydrin. Alkyl- and hydroxy-containing oligoethers with enhanced content of functional groups of different nature were obtained by polymer analogous reaction.  相似文献   

10.
To control the surface properties of a polystyrene-block-poly(ethylene oxide) diblock copolymer, perfluorinated chemical moieties were specifically incorporated into the block copolymer backbone. A polystyrene-block-poly[(ethylene oxide)-stat-(allyl glycidyl ether)] [PS-b-P(EO-stat-AGE)] statistical diblock terpolymer was synthesized with varying incorporations of allyl glycidyl ether (AGE) in the poly(ethylene oxide) block from 0 to 17 mol %. The pendant alkenes of the AGE repeat units were subsequently functionalized by thiol-ene chemistry with 1H,1H,2H,2H-perfluorooctanethiol, yielding fluorocarbon-functionalized AGE (fAGE) repeat units. (1)H NMR spectroscopy and size-exclusion chromatography indicated well-defined structures with complete functionalization of the pendant alkenes. The surfaces of the polymer films were characterized after spray coating by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS), showing that the P(EO-stat-fAGE) block starts to compete with polystyrene to populate the surface after only 1 mol % incorporation of fAGE. Increasing the incorporation of fAGE led to an increased amount of perfluorocarbons on the surface and a decrease in the concentration of PS. At a fAGE incorporation of 8 mol %, PS was not detected at the surface, as measured by NEXAFS spectroscopy. Water contact angles measured by the captive-air-bubble technique showed the underwater surfaces to be dynamic, with advancing and receding contact angles varying by >20°. Protein adsorption studies demonstrated that the fluorinated surfaces effectively prevent nonspecific binding of proteins relative to an unmodified PS-b-PEO diblock copolymer. In biological systems, settlement of spores of the green macroalga Ulva was significantly lower for the fAGE-incorporated polymers compared to the unmodified diblock and a polydimethylsiloxane elastomer standard. Furthermore, the attachment strength of sporelings (young plants) of Ulva was also reduced for the fAGE-containing polymers, affirming their potential as fouling-release coatings.  相似文献   

11.
Transparent films were prepared by cross‐linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2, propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron‐acceptor and electron‐donor groups enables particularly facile UV‐ or redox‐initiated free‐radical curing. The resulting materials are transparent and highly interesting for coating applications.  相似文献   

12.
Hydrosilylation of allyl glycidyl ether with triethoxysilane   总被引:1,自引:0,他引:1  
Hydrosilylation of allyl glycidyl ether with triethoxysilane in presence of Speier’s catalyst leads to triethoxy(3-glycidoxypropyl)silane and triethoxy(2-glycidoxy-1-methylethyl)silane and is accompanied by isomerization of allyl glycidyl ether and cleavage of the oxirane ring and the ether bond. An effect of admixtures in allyl glycidyl ether on the process is revealed. Some other hydrosilylation catalysts and additives to Speier’s catalyst are studied  相似文献   

13.
Poly(glycidyl methacrylate), PGMA, chains in linear and arborescent structures were incorporated onto surfaces of poly(tetrafluoroethylene), PTFE, films by hydrogen plasma and ozone treatment and atom transfer radical polymerization. The epoxide groups of the PGMA chains were further reacted with acetic acid (AAc), oxalic acid (XAc), allyl amine (AA), and ethylenediamine (EDN) to introduce hydroxyl and amine groups to the surfaces of the PTFE films. Surface characterizations performed by Fourier Transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the surface modification and the chemical structure. The PGMA chains in arborescent structures show a high effectiveness for the enhancement of the adhesion of PTFE films. The adhesion of PTFE films was also significantly enhanced by ring-opening reactions of the PGMA epoxide groups with acetic acid and amine compounds. A high value of 9.5 N cm(-1) in the optimum 180 degrees peel strength test was observed with PTFE/copper assemblies.  相似文献   

14.
黄家贤  朱端慧  吕钢  丁伦汉  王志军 《化学学报》1995,53(10):1018-1023
本文合成了β-氯乙基缩水甘油醚及其聚合物。结果表明, AlEt3-0.5H2O体系是β-氯乙基缩水甘油醚的一种有效的聚合引发剂。研究了聚(β-氯乙基缩水甘油醚)的酯化反应动力学, 并通过^1H NMR和IR光谱确立了酯化度的计算关系式。最后, 通过光交联的动力学研究发现, 酯化聚合物中的肉桂酰基含量为85%时, 材料的感光灵敏度最高。  相似文献   

15.
Polysuccinates with pendant allyl groups (PSAGE) were synthesized by melt copolymerization of succinic anhydride with allyl glycidyl ether and eventually other glycidyl ethers. It was found that PSAGE could be crosslinked by radical copolymerization with methyl methacrylate. Oxidized PSAGE considered as multifunctional epoxy resin was cured with use of glutaric anhydride to form solid material susceptible to hydrolytic degradation to water-soluble non-toxic products. Comb-like amphiphilic polysuccinates containing both pendant poly(oxyethylene) chains and epoxy groups have been synthesized as well and checked for their solubility in water. Properties of PSAGE-type polymers suggests their potential use as biomaterials and polymeric drug carries. Please note, in the print publication of D. Theis, T. Schmidt, K.-F. Arndt, Macromol. Symp. 210 (2004), 465, erroneously the DOI 10.1002/masy.200450651 is repeated. There, the DOI should read: 10.1002/masy.200450652  相似文献   

16.
The kinetics of the polymerization of ethyl glycidyl ether and allyl glycidyl ether with BF3OEt2 as catalyst has been studied. Chain transfer to the monomer has been evidenced. It increased with the monomer concentration and decreased with the increase of the dielectric constant of the solvent used and decreased in the presence of a monomer more basic than glycidyl ethers, for example, 1,3-dioxepane.  相似文献   

17.
UV-curable polydimethylsiloxane epoxy acrylate (PSEA) was synthesized by hydrosilylation of allyl glycidyl ether with hydrogen-containing polydimethylsiloxane to give polydimethylsiloxane-type epoxy resin which modified with acrylic acid. The curing speed and the double bond conversion in the UV cured film were influenced by the purity of PSEA with Fourier transform infrared spectroscopy (FT-IR) measurements. The influences of the synthetic process, such as, the reaction temperature, the concentration of reactants and the catalyst which determined the purity and activity of resins were discussed in detail. The structures of this resin were characterized by 1H-NMR and FT-IR spectra. The molecular weight was checked by gel permeation chromatography, and Mn is 45,000. The properties of the cured film were also investigated by thermogravimetric analyzer, dynamical thermal mechanical analysis, and etc. For example, tensile strength (6.9 Mpa), elongation (20%), hardness (A; 18), water absorption (24 h; 2%), weight loss (40 min, 300 °C; 5%) and etc.  相似文献   

18.
Surface graft polymerization of glycidyl methacrylate (GMA) was carried out onto a high- density polyethylene (PE) sheet pretreated with corona to introduce peroxides onto the PE surface. Graft polymerization of GMA was effected by UV irradiation of the coronatreated PE in the presence of monomer solution without the use of any photosensitizer. The graft layer was found by staining the PE cross section to localize in the surface region of PE. The physical change in the PE surface was characterized by scanning electron microscopy, while the chemical changes due to the GMA graft polymerization were assessed by the dynamic contact angle, FT-IR, and x-ray photoelectron spectroscopy (XPS) measurement. The peroxide formation by corona exposure was confirmed by the XPS measurement after derivatization with SO2. The epoxy groups introduced onto the PE surface by the GMA graft polymerization were reactive with water (in the presence of HCI) and amines. The adhesion between the GMA-grafted PE and an epoxy resin was studied by means of a shear strength test method. The GMA-grafted PE exhibited strong interfacial adhesion with the epoxy resin, compared to the original and corona-treated PE. The adhesion strength of the GMA-grafted PE was nearly two times higher than that of the corona-treated PE. This strongly suggests that the enhanced adhesion between the surface-grafted PE and the epoxy resin is ascribed to covalent bonding of the epoxy groups on the GMA-grafted surface to the amines in the epoxy resin. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
3-Allyloxy-2-hydroxypropylcelluloses (AHP-celluloses), reactive unsaturated cellulose derivatives, were homogeneously synthesized by the reaction of cellulose with allyl glycidyl ether (AGE) in NaOH/urea aqueous solution. Water-soluble AHP-celluloses with DSNMR = 0.32–0.67 were prepared from microcrystalline cellulose. The degree of substitution (DS) of AHP-celluloses could be controlled by varying the molar ratio of AGE and NaOH to AGU and the reaction conditions. The structure of AHP-cellulose samples were characterized by means of FT-IR, NMR spectroscopy and size exclusion chromatography. The cellulose ether shows thermoreversible flocculation. Bromination reactions were carried out as subsequent functionalization both to illustrate the reactivity of the allyl function and to determine the DS values.  相似文献   

20.
新型离子交换硅胶键合相的制备及评价   总被引:2,自引:0,他引:2  
雷晓玲  王俊德  丛润滋 《色谱》1999,17(5):431-434
二甲基氯硅烷与硅胶表面反应,形成牢固的SiH键之后,连接上活泼的中间体——烯丙基缩甘油醚作为柔软的分子臂,最后接上二乙基氨基,由此制得了新型的离子交换硅胶键合相。经漫反射红外光谱、元素分析和高效液相色谱法对键合相进行了鉴定和评价。结果表明:键合反应按预定路线进行,键合相具有较好的色谱性能。此种方法可有效地运用于无孔硅胶填料的制备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号