首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 3-parameter local hot spot model of gas-surface reactivity is employed to analyze and predict dissociative sticking coefficients for CH(4) incident on Ir(111) under varied nonequilibrium and equilibrium conditions. One Ir surface oscillator and the molecular vibrations, rotations, and translational energy directed along the surface normal are treated as active degrees of freedom in the 14 dimensional microcanonical kinetics. The threshold energy for CH(4) dissociative chemisorption on Ir(111) derived from modeling molecular beam experiments is E(0) = 39 kJ/mol. Over more than 4 orders of magnitude of variation in sticking, the average relative discrepancy between the beam and theoretically derived sticking coefficients is 88%. The experimentally observed enhancement in dissociative sticking as beam translational energies decrease below approximately 10 kJ/mol is consistent with a parallel dynamical trapping/energy transfer channel that likely fails to completely thermalize the molecules to the surface temperature. This trapping-mediated sticking, indicative of specific energy transfer pathways from the surface under nonequilibrium conditions, should be a minor contributor to the overall dissociative sticking at thermal equilibrium. Surprisingly, the CH(4) dissociative sticking coefficient predicted for Ir(111) surfaces at thermal equilibrium, based on the molecular beam experiments, is roughly 4 orders of magnitude higher than recent measurements on supported nanoscale Ir catalysts at 1 bar pressure, which suggests that substantial improvements in catalyst turnover rates may be possible.  相似文献   

2.
This work describes the chemical reactivity of a cationic (η(5)-C(5)Me(5))Ir(III) complex that contains a bis(aryl) phosphine ligand, whose metalation determines its unusual coordination in a κ(4)-P,C,C',C" fashion. The complex (1(+) in this paper) undergoes very facile intramolecular C-H bond activation of all benzylic sites, in all likelihood through an Ir(V) hydride intermediate. But most importantly, it transforms into a hydride phosphepine species 4(+) by means of an also facile, base-catalyzed, intramolecular dehydrogenative C-C coupling reaction. Mechanistic studies demonstrate the participation as a key intermediate of an electrophilic cationic Ir(III) alkylidene, which has been characterized by low-temperature NMR spectroscopy and by isolation of its trimethylphosphonium ylide. DFT calculations provide theoretical support for these results.  相似文献   

3.
Six-dimensional quantum dynamics calculations on dissociative chemisorption of H(2) on Ru(0001) are performed. The six-dimensional potential energy surface is generated using density functional theory. Two different generalized gradient approximations are used, i.e., RPBE and PW91, to allow the results to be compared. The dissociation probability for normally incident H(2) on a clean Ru(0001) surface is calculated. Large differences between the reaction probabilities calculated using the RPBE and PW91 are seen, with the PW91 results showing a much narrower reaction probability curve and a much higher reactivity. Using the reaction probabilities and assuming normal energy scaling reaction rates are generated for temperatures between 300 and 800 K. The rate generated using the PW91 results is higher by about a factor 5 than the rate based on the RPBE results in the range of temperatures relevant to ammonia production.  相似文献   

4.
Ito M  Nakamura M 《Faraday discussions》2002,(121):71-84; discussion 97-127
Water adsorption on Pt( 111) and Ru(001) treated with oxygen, hydrogen chloride and sodium atom at 20 K has been studied by Fourier transform infrared spectroscopy, scanning tunneling microscopy and surface X-ray diffraction. Water molecules chemisorb predominantly on the sites of the electronegative additives, forming hydrogen bonds. Three types of hydration water molecules coordinate to an adsorbed Na atom through an oxygen lone pair. In contrast, water molecules adsorb on electrode surfaces in a simple way in solution. In 1 mM CuSO4 + 0.5 M H2SO4 solution on an Au(111) electrode surface, water molecules coadsorb not only with sulfuric acid anions through hydrogen bonding but also with copper, over wide potential ranges. In the first stage of underpotential deposition (UPD), each anion is accommodated by six copper hexagon (honeycomb) atoms on which water molecules dominate. At any UPD stage water molecules interact with both the copper atom and sulfuric acid anions on the Au(111) surface. Water molecules also coadsorb with CO molecules on the surface of 2 x 2-2CO-Ru(001). All of the hydration water molecules chemisorb weakly on the surfaces. There appears to be a correlation between the orientation of hydrogen bonding water molecules and the electrode potential.  相似文献   

5.
6.
Two-dimensional, three-dimensional, and four-dimensional quantum dynamic calculations are performed on the dissociative chemisorption of CH(4) on Ni(111) using the multiconfiguration time-dependent Hartree (MCTDH) method. The potential energy surface used for these calculations is 15-dimensional (15D) and was obtained with density functional theory for points which are concentrated in the region that is dynamically relevant to reaction. Many reduced dimensionality calculations were already performed on this system, but the molecule was generally treated as pseudodiatomic. The main improvement of our model is that we try to describe CH(4) as a polyatomic molecule by including a degree of freedom describing a bending vibration in our three-dimensional and four-dimensional models. Using a polyspherical coordinate system, a general expression for the 15D kinetic energy operator is derived, which discards all the singularities in the operator and includes rotational and Coriolis coupling. We use seven rigid constraints to fix the CH(3) umbrella of the molecule to its gas phase equilibrium geometry and to derive two-dimensional, three-dimensional, and four-dimensional Hamiltonians, which were used in the MCTDH method. Only four degrees of freedom evolve strongly along the 15D minimum energy path: the distance of the center of mass of the molecule to the surface, the dissociative C[Single Bond]H bond distance, the polar orientation of the molecule, and the bending angle between the dissociative C[Single Bond]H bond and the umbrella. A selection of these coordinates is included in each of our models. The polar rotation is found to be important in determining the mode selective behavior of the reaction. Furthermore, our calculations are in good agreement with the finding of Xiang et al. [J. Chem. Phys. 117, 7698 (2002)] in their reduced dimensional calculation that the helicopter motion of the umbrella symmetry axis is less efficient than its cartwheel motion for promoting the reaction. The effect of pre-exciting the bend modes is qualitatively incorrect at higher energies, suggesting the necessity of including additional rotational and vibrational degrees of freedom in the model.  相似文献   

7.
The influence of oxygen precoverage on the bonding geometry of methoxide on Ru(001) was studied using the isotopically labeled molecule CHD2OH by reflection-absorption infrared spectroscopy (RAIRS). This molecule is an excellent model because the vibrational spectra of CHD2O- may be unambiguously correlated with the adsorption configuration. For Ru(001)--O layers with an effective oxygen coverage (theta0) between 0.25 and 0.6 ML (ML=monolayer), the influence of the oxygen precoverage was shown to vary with the initial methanol exposure. For an extremely low dose of [D2]methanol (0.01 L; L=Langmuir, 1 L=10(-6) torr s), at 90 K, no oxygen-coverage effects were detected on the geometry of [D2]methoxide: it adsorbs in an upright orientation (pseudo-C(3v) local symmetry), just as on clean Ru(001). An increase in the methanol exposure to 0.1 L, at the same temperature, results in the formation of a disordered layer of tilted methoxide: for theta(O)=0.25 ML, C(s)/C1 and intrinsic C1 configurations are present on the surface, whereas for theta(O)> or =0.5 ML, only the former species were identified. The thermal activation of these tilted layers to 105 K results in a lower coverage of upright methoxide for any oxygen precoverage, coadsorbed with decomposition products, as confirmed by the detection of adsorbed formaldehyde and, on the denser oxygen layer (theta(O)=0.6 ML), formate. The influence of the oxygen precoverage becomes determinant when annealing a [D2]methanol multilayer to 105 K: for theta(O)=0.25 ML, the RAIR spectrum correlates with a disordered layer of tilted methoxide and formaldehyde, whereas for theta(O)=0.6 ML upright methoxide, formate, and carbon monoxide were identified. On clean Ru(001), for methanol exposures > or =0.1 L, the C(3v) methoxide configuration was never attained upon thermal activation.  相似文献   

8.
The interaction and reactivity of trimethylamine (TMA) has been studied over clean and oxygen-covered Ru(001) under UHV conditions, as a model for the chemistry of high-density hydrocarbons on a catalytic surface. The molecule adsorbs intact at surface temperature below 100 K with the nitrogen end directed toward the surface, as indicated from work function change measurements. At coverage less than 0.05 ML (relative to the Ru substrate atoms), TMA fully dissociates upon surface heating, with hydrogen as the only evolving molecule following temperature-programmed reaction/desorption (TPR/TPD). At higher coverage, the parent molecule desorbs, and its desorption peak shifts down from 270 K to 115 K upon completion of the first monolayer, indicating a strong repulsion among neighbor molecules. The dipole moment of an adsorbed TMA molecule has been estimated from work function study to be 1.4 D. Oxygen precoverage on the ruthenium surface has shown efficient reactivity with TMA. It shifts the surface chemistry toward the production of various oxygen-containing stable molecules such as H2CO, CO2, and CO that desorb between 200 and 600 K, respectively. TMA at a coverage of 0.5 ML practically cleans off the surface from its oxygen atoms as a result of TPR up to 1650 K, in contrast to CO oxidation on the O/Ru(001) surface. The overall reactivity of TMA on the oxidized ruthenium surface has been described as a multistep reaction mechanism.  相似文献   

9.
We constructed a six-dimensional potential energy surface(PES)for the dissociative chemisorption of HCl on Au(111)using the neural networks method based on roughly 70000 energies obtained from extensive density functional theory(DFT)calculations.The resulting PES is accurate and smooth,based on the small fitting errors and good agreement between the fitted PES and the direct DFT calculations.Time-dependent wave packet calculations show that the potential energy surface is very well converged with respect to the number of DFT data points,as well as to the fitting process.The dissociation probabilities of HCl initially in the ground rovibrational state from six-dimensional quantum dynamical calculations are quite diferent from the four-dimensional fixed-site calculations,indicating it is essential to perform full-dimensional quantum dynamical studies for the title molecule-surface interaction system.  相似文献   

10.
The bulky 2,5-dimethylthiophene (2,5-Me2T) reacts at 60 degrees C with TpMe2Ir(C2H4)2 to give a mixture of two TpMe2Ir(III) hydride products, 3 and 4, that contain in addition a thienyl (3) or a thienyl-derived ligand (4). For the generation of 3 only sp2 C-H activation is needed, but the formation of 4 requires also the activation of an sp3 C-H bond and the formation of a new C-C bond (between vinyl and thienyl fragments). In the presence of 2,5-Me2T, compound 4 reacts further to produce a complex thiophenic structure (5, characterized by X-ray methods) that derives formally from two molecules of 2,5-Me2T and a vinyl fragment. Compounds 3-5 can be readily protonated by [H(OEt2)2][BAr'4](Ar'= 3,5-C6H3(CF3)2), with initial generation of carbene ligands (in the case of 3 and 5) as a consequence of H+ attack at the beta-carbon of the Ir-thienyl unit. Free, substituted thiophenes, derived from the original 2,5-Me2T, may be isolated in this way.  相似文献   

11.
Extended Hückel MO theory has been applied to treat the chemisorption of hydrogen and oxygen atoms on Ru(001) surfaces. The site of chemisorption, surface-adatom distance, chemisorption energy and the vibrational frequency of the adatom on the surface have been calculated. For different sites, the chemisorption energy (Ec) results are as follows: For hydrogen, |Ec|(centre) > |Ec|(top) > |Ec|(bridge); while for oxygen, |Ec|(bridge) > |Ec|(top) > |Ec|(centre). These results are critically discussed in the light of the recent results obtained from the electron energy-loss spectroscopy (EELS) experiments.  相似文献   

12.
A local hot spot model of gas-surface reactivity is used to investigate the state-resolved dynamics of methane dissociative chemisorption on Pt(111) under thermal equilibrium conditions. Three Pt surface oscillators, and the molecular vibrations, rotations, and the translational energy directed along the surface normal are treated as active degrees of freedom in the 16-dimensional microcanonical kinetics. Several energy transfer models for coupling a local hot spot to the surrounding substrate are developed and evaluated within the context of a master equation kinetics approach. Bounds on the thermal dissociative sticking coefficient based on limiting energy transfer models are derived. The three-parameter physisorbed complex microcanonical unimolecular rate theory (PC-MURT) is shown to closely approximate the thermal sticking under any realistic energy transfer model. Assuming an apparent threshold energy for CH(4) dissociative chemisorption of E(0)=0.61 eV on clean Pt(111), the PC-MURT is used to predict angle-resolved yield, translational, vibrational, and rotational distributions for the reactive methane flux at thermal equilibrium at 500 K. By detailed balance, these same distributions should be observed for the methane product from methyl radical hydrogenation at 500 K in the zero coverage limit if the methyl radicals are not subject to side reactions. Given that methyl radical hydrogenation can only be experimentally observed when the CH(3) radicals are kinetically stabilized against decomposition by coadsorbed H, the PC-MURT was used to evaluate E(0) in the high coverage limit. A high coverage value of E(0)=2.3 eV adequately reproduced the experimentally observed methane angular and translational energy distributions from thermal hydrogenation of methyl radicals. Although rigorous application of detailed balance arguments to this reactive system cannot be made because thermal decomposition of the methyl radicals competes with hydrogenation, approximate applicability of detailed balance would argue for a strong coverage dependence of E(0) with H coverage--a dependence not seen for methyl radical hydrogenation on Ru(0001), but not yet experimentally explored on Pt(111).  相似文献   

13.
The structure and stability of local centers involving a different number of oxygen atoms on the surface of crystalline lead sulfide (001) were calculated in the framework of the cluster approach by the hybrid density functional theory B3LYP method. The trends of the formation of such centers and changes in the core electron binding energies for the sulfur and lead atoms constituting these centers were considered.  相似文献   

14.
Reaction of 2-(2′-hydroxyphenylazo)phenol with [Rh(PPh3)3Cl] in refluxing benzene in presence of triethylamine afforded a red complex in which the ligand is coordinated to rhodium as a tridentate O,N,O-donor. However, similar reaction of [Rh(PPh3)3Cl] with 2-(2′-carboxyphenylazo)-4-methylphenol yielded two complexes, viz. a blue one and a green one. In both the complexes the ligand is coordinated as C,N,O-donor. However, in the blue complex orthometallation takes place from the ortho-carbon atom, which bears -COOH group via decarboxylation and in green one orthometallation occurs from the other ortho-carbon. Structures of all the three complexes were determined by X-ray crystallography. In all the three complexes rhodium is sharing the equatorial plane with the tridentate ligand and a chloride, and the two triphenylphosphines are axially disposed. All of the complexes show intense MLCT transitions in the visible region. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation on the positive side of SCE and a reduction of the coordinated azophenolate ligand on the negative side.  相似文献   

15.
16.
17.
18.
TpRu(PMe3)2(OH) (1) reacts with C6D6 to initiate H/D exchange between the hydroxide ligand and the deuterated benzene. In addition, complex 1 catalyzes H/D exchange between H2O and C6D6. Mechanistic and computational studies suggest that a likely reaction pathway for the H/D exchange involves loss of PMe3 to produce {TpRu(PMe3)(OH)}, followed by the net addition of a benzene C-H(D) bond across the Ru-OH bond to form the putative complex TpRu(PMe3)(OH2)(Ph).  相似文献   

19.
Ruthenium-catalyzed silylation of sp3 C-H bonds at a benzylic position with hydrosilanes gave benzylsilanes. For this silylation reaction, Ru3(CO)12 complex showed high catalytic activity. This silylation proceeded at the methyl C-H bond selectively. For this silylation reaction, pyridyl and pyrazolyl groups, and the imino group in hydrazones, can function as a directing group. Several hydrosilanes involving triethyl-, dimethylphenyl-, tert-butyldimethyl-, and triphenylsilanes can be used as a silylating reagent. Coordination of an sp2 nitrogen atom to the ruthenium complex is important for achieving this silylation reaction.  相似文献   

20.
We have investigated the decomposition and chemisorption of a 1,3,5-trinitro-1,3,5-triazine (RDX) molecule on Al(111) surface using molecular dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). The real-space DFT calculations are based on higher-order finite difference and norm-conserving pseudopotential methods. Strong attractive forces between oxygen and aluminum atoms break N-O and N-N bonds in the RDX and, subsequently, the dissociated oxygen atoms and NO molecules oxidize the Al surface. In addition to these Al surface-assisted decompositions, ring cleavage of the RDX molecule is also observed. These reactions occur spontaneously without potential barriers and result in the attachment of the rest of the RDX molecule to the surface. This opens up the possibility of coating Al nanoparticles with RDX molecules to avoid the detrimental effect of oxidation in high energy density material applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号