首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A conformationally chiral zwitterionic molecule forms mutually orthogonal helical superstructures in the crystal. This is achieved through a network of hydrogen bond pathways, and electrostatic interactions in crystals formed with and without water of crystallization. A systematic protocol for the computation of charge distribution on the 'molecule-in-the-crystal' is presented; the computed charges provide an insight into the origin of the intermolecular electrostatic interactions. The coexisting orthogonal helical formations lead to the homochiral assembly, and spontaneous resolution observed in the crystals. This material facilitates an appraisal of the molecular level interactions, which form the basis for the persistent spontaneous resolution of a conformationally chiral molecule in the solid state.  相似文献   

2.
3.
4.
5.
This Minireview provides a critical account of the development of allene-containing advanced functional materials, starting with the design and synthesis of stable and enantiopure building blocks. A variety of systems, including shape-persistent macrocycles, foldamers, polymers, charge-transfer chromophores, dendrimers, liquid crystals, and redox-switchable chiral chromophores are discussed from the viewpoint of their syntheses, properties, and potential applications. The goal of this Minireview is to inspire new uses of enantiopure allenes for the rational design of advanced materials.  相似文献   

6.
In α‐peptides, the 8/10 helix is theoretically predicted to be energetically unstable and has not been experimentally observed so far. Based on our earlier studies on ‘helical induction’ and ‘hybrid helices’, we have adopted the ‘end‐capping’ strategy to induce the 8/10 helix in α‐peptides by using short α/β‐peptides. Thus, α‐peptides containing a regular string of α‐amino acids with alternating chirality were end capped by α/β‐peptides with 11/9‐helical motifs at the termini. Extensive NMR spectroscopy studies of these peptides revealed the presence of a hitherto unknown 8/10‐helical pattern; the H‐bonds in the shorter pseudorings were rather weak. The approach of using short helical motifs to induce new mixed helices in α‐peptides could provide avenues for more versatile design strategies.  相似文献   

7.
8.
9.
The bihelical (figure of "infinity") topology was examined from vantages of design, crystal structures, chirality, circular dichroism (CD) studies and molecular-orbital calculations. The minimalistic design envisaged the sequential linking of cystine to the anchor diphenic acid, which proved to be a general conformational lock. The bihelical compound 4 was obtained in two steps from diphenic anhydride 1 and cystine di-OMe. The chirality of 4 arises largely from the L-cystine. The bihelical compound 5 obtained from D-cystine di-OMe was found, by X-ray crystallography, CD studies, and optical rotation, to be the perfect mirror image of 4 prepared from L-cystine. The crystal structure of prototype 8, prepared by protocols used for 4 from the achiral cystine analogue cystamine, had a "U"-shaped conformation held together by intramolecular hydrogen bonds. Analysis of 4 and 5 show that the pairs of nine-membered beta-turn-like constructs made compact through hydrogen bonding with DMSO hold the key for the bihelical conformation. Another factor is the need for the presence of a ligand at the Calpha position. The absence of this, as in 8, allows major flexibility in the torsional angles around this critical region, promoting flexible alternatives. The CD analysis of 4, confirmed to be bihelical by X-ray crystallography, showed a typical negative band at about 210 A attributed to the beta-turn-like motif, and in the positive-band region a peak at about 227 A, generally related to the twist of the biphenyl unit. The cystamine analogue 8, which showed a "U"-type structure, presented a CD spectrum with no typical features. The total energy, derived from theoretical calculations by using the X-ray structure data, support the bihelical structure for 4 and a "U"-shaped one for 8. The limited utility of such calculations was tested with composite 9. Composite 9, in which the anchor diphenic acid is linked to cystamine on the one hand and to cystine on the other, showed a CD spectrum similar to that of 4, and this coupled with molecular-orbital calculations, using data from 4 and 8, predict a bihelical structure for this compound.  相似文献   

10.
Ethynylpyridine polymers and oligomers consisting of 4‐substituted pyridine rings linked by acetylene bonds at the 2‐ and 6‐positions have been investigated. Ethynylpyridine oligomers covalently linked with a glycosyl chiral template form chiral helical complexes by intramolecular hydrogen bonding, in which the chirality of the template is translated to the helix. With a view to fixation of the chiral architecture, D /L ‐galactosyl‐ and D /L ‐mannosyl‐linked ethynylpyridine oligomers have been developed with 4‐(3‐butenyloxy)pyridine units having alkene side chains. The helical structures are successfully stapled by alkene metathesis of the side chains. Subsequent removal of the chiral templates by acidolysis produces template‐free stapled oligomers. The chiral, template‐free, stapled oligomers show chiral helicity, which is resistant to polar solvents and heating.  相似文献   

11.
Tetrathiafulvalenes (TTF) S‐TTF and R‐TTF having four chiral amide end groups self‐organize into helical nanofibers in the presence of 2,3,5,6‐tetrafluoro‐7,7′,8,8′‐tetracyano‐p‐quinodimethane (F4TCNQ). The intermolecular hydrogen bonding among chiral amide end groups and the formation of charge‐transfer complexes results in a long one‐dimensional supramolecular stacking, and the chirality of the end groups affects the molecular orientation of TTF cores within the stacks. Electronic conductivity of a single helical nanoscopic fiber made of S‐TTF and F4TCNQ is determined to be (7.0±3.0)×10?4 S cm?1 by point‐contact current‐imaging (PCI) AFM measurement. Nonwoven fabric composed of helical nanofibers shows a semiconducting temperature dependence with an activation energy of 0.18 eV.  相似文献   

12.
13.
Asymmetry through ion pairing: Upon addition of chloride and bromide ions, as chiral ammonium salts, to solutions of pyrrole-based π-conjugated linear oligomers, helical structures form with asymmetric induction, which is guided by the formation of diastereomeric ion pairs with chiral counter cations. These ions pairs exhibit circular dichroism (CD) and strong circularly polarized luminescence (CPL) with g(lum) values of greater than 0.1.  相似文献   

14.
15.
16.
The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring‐open diarylethenes is doped with a small amount of their chiral, ring‐closed counterpart. The molecules co‐assemble into helical fibers through hydrogen bonding and the handedness of the fibers is biased by the chiral, ring‐closed diarylethene. Photochemical ring closure of the open diarylethene yields the ring‐closed product, which is enriched in the template enantiomer.  相似文献   

17.
18.
Oligoamides of 8-amino-4-isobutoxy-2-quinolinecarboxylic acid were designed and synthesized, and their helical structures were characterized in the solid state by single crystal X-ray diffraction, and in solution by 1H NMR. The monomer methyl 4-isobutoxy-8-nitro-2-quinolinecarboxylate is easily prepared in three steps from 2-nitroaninile and dimethyl acetylene dicarboxylate. Successive hydrogenations of nitro groups, saponifications of esters and couplings of amines and acids via the acid chlorides gave a dimer, tetramer, hexamer, octamer, and decamer in a convergent fashion. The oligomers were shown to adopt a bent conformation stabilized by intramolecular hydrogen bonds between amide hydrogens and adjacent quinoline nitrogens. In the solid, the dimer adopts a planar crescent shape and the octamer a helical conformation. All NMR data are consistent with similar conformations in solution. The helices are apparently remarkably stable. Some of them remain helical even at 120°C in deuterated DMSO. The structural studies confirm the predictions made by computer and demonstrate the high potency of the design principles.  相似文献   

19.
Chirality control of helixes with the Δ (P) or Λ (M) form is interesting in various fields such as extended metal atom chains (EMACs), in which the metal backbones are helically wrapped by four ligands. Herein, we report two EMACs, Δ‐[Ni5((?)camnpda)4] and Λ‐[Ni5((+)camnpda)4], whose chiralities are controlled by chiral ligands with naphthyridine and camphorsulfonyl groups. There is a large energy difference (108 kcal mol?1) between the two helical structures with one chiral ligand. Furthermore, the electron communication between [Ni2]3+ units is more pronounced than in [Ni5(bna)4Cl2]2+ (bna=binaphthyridylamido). The results demonstrate control of small‐scale helical structure and set the stage for future development of chiral controlled base and nanoelectronic devices.  相似文献   

20.
Two‐dimensional (2D) anisotropic silver nanowire (AgNW) arrays, fabricated inside chiral mesoporous silica (CMS), exhibited strong and tunable plasmon circular dichroism (CD) signals in the visible and near‐IR regions due to collective dipole coupling between the anisotropic AgNWs. The multihelix with a helical channel orientation and helical arrays of opposite handedness in CMS played a predominant effects on the transversal and longitudinal chirality of the AgNWs, respectively.This behavior differs from both isotropic‐nanoparticle and single‐helix‐induced CD responses. This system will provide new insight into the optical activity of metal inorganic nanoparticles capped with chiral organic molecules and assembled in chiral environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号