首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The binding of prasterone sulfate (PS) in human plasma was investigated. Binding percentages of PS to human plasma, human serum albumin (HSA), human alpha 1-acid glycoprotein (AGP) and human gamma-globulin (GGL) were independent of the PS concentration between 0.1 and 8.0 micrograms/ml. The mean binding percentages were 99.1% for human plasma, 98.3% for HSA, 12.6% for AGP and 8.1% for GGL. Though PS is an acidic drug, binding of PS to AGP was observed. From the binding index, it was found that PS mainly bound to HSA in human plasma and that the contributions of AGP and GGL to PS in plasma were negligible.  相似文献   

2.
Tamoxifen is administered for the treatment of breast cancer; however resistance to therapy is commonplace. Postulated mechanisms of resistance to tamoxifen include altered pharmacology of the drug, changes in the structure and function of the oestrogen receptor and expression of genes that function to support the growth of cells resistant to tamoxifen. However, binding of drugs to proteins found in the plasma is known to affect the efficacy of drugs and alter their distribution. It is already known that tamoxifen is bound 99% to albumin. We investigated the interaction between the plasma protein, alpha-1-acid glycoprotein (AGP), and tamoxifen, since if binding did occur then the free plasma concentration of the drug would be reduced, resulting in the minimum effective concentration of tamoxifen not being attained. Using a recently described intrinsic fluorescence technique for the study of drug-protein interactions, the extent of binding between tamoxifen citrate and AGP was determined. Furthermore, analysis of binding of the known active metabolites of tamoxifen (4-hydroxytamoxifen, N-desmethyltamoxifen, N-desdimethyltamoxifen, cis-alpha-hydroxytamoxifen and trans-alpha-hydroxytamoxifen) to AGP was conducted. Tamoxifen citrate and metabolites were shown to bind AGP, however the level of interaction was low and negligible at the concentration of the drug found in the plasma.  相似文献   

3.
Plasma protein binding of weakly basic drugs such as propranolol and quinidine was determined in rats with carbon tetrachloride (CCl4)-induced hepatic disease. Free fractions of propranolol and quinidine in the plasma of rats at 24 h after CCl4-intoxication were decreased by 41 and 30%, respectively, compared to those of control rats. An addition of Tris (butoxyethyl) phosphate (TBEP), a specific displacer for basic drugs from alpha 1-acid glycoprotein (AGP), to the plasma increased the free fractions of the basic drugs, resulting in no difference in the extent of the plasma free fraction of each drug between control and CCl4-intoxicated rats. Plasma concentration of AGP in CCl4-intoxicated rats was elevated 2.7-fold of that in control rats at 24 h after the CCl4 intoxication and reached a peak of 4.8-fold elevation at 48 h. A regression analysis revealed a high degree of positive correlation between ratios of bound to free fraction of propranolol and plasma concentrations of AGP. These results suggest that the plasma protein binding of the basic drugs was increased mainly due to the rise in the plasma AGP concentration in CCl4-intoxicated rats.  相似文献   

4.
The concentration and glycosylation of alpha(1)-acid glycoprotein (AGP) alter significantly during inflammation. A definitive physiological role for AGP remains elusive and is the subject of extensive investigation. This study investigated the influence of AGP on the activity of collagenase-3, an important mediator of cartilage destruction in rheumatoid arthritis. AGP was isolated from normal and rheumatoid plasma. Fucosylation was determined by high pH anion-exchange chromatography; sialylation was assessed following enzymatic digest. Rheumatoid AGP displayed elevated fucosylation and sialylation compared with normal. The influence of each sample on collagenase-3 activity was measured fluorometrically. AGP influenced collagenase-3 catalysis and collagen binding, with catalytic activity correlating with fucosylation. Rheumatoid AGP exhibited less efficient inhibition than normal plasma AGP. It is hypothesized that AGP within rheumatoid synovial fluid may be inadequate to prevent excessive cartilage destruction and hence may exacerbate the disease process.  相似文献   

5.
One of the most ubiquitous plasma proteins, alpha-1-acid glycoprotein (AGP), has a high affinity, low capacity binding for basic drugs positively charged at physiological pH. Moreover, as an acute phase protein its level is increased in various disease states in a manner that is likely to influence the free plasma level of a drug, the ability to attain minimum effective concentration and overall in vivo effectiveness. AGP is a glycoprotein known to display disease specific changes in glycosylation and although this secondary modification is not directly involved in drug binding, it may influence the conformation of the binding site. Binding studies reveal that alpha-1-acid glycoprotein bind mainly to the tuberculosis drugs: rifampicin; isoniazid; pyrazinamide; p-aminosalicylic acid; capreomycin; ethionamide; levofloxacin and ofloxacin out with the therapeutic plasma range tested. These results are however still considered significant as not only are alpha-1-acid glycoprotein levels increased during the acute phase response but specific alpha-1-acid glycoprotein from tuberculosis samples are subject to glycosylation changes which can increase the binding affinity and cause binding to occur at the therapeutic concentration.  相似文献   

6.
An important topic in the drug discovery and development process is the role of drug binding to plasma proteins. In this paper the characterization of the interaction between antihistamines (cationic drugs) towards human serum albumin (HSA) and alpha(1)-acid glycoprotein (AGP) under physiological conditions by capillary electrophoresis-frontal analysis is presented. Furthermore, the binding of these drugs to all plasma proteins is evaluated by using ultrafiltration and capillary electrophoresis. Antihistamines present a wide-ranging behaviour with respect to their affinities towards plasma proteins. Orphenadrine, phenindamine, tripelenamine and tripolidine principally bind to HSA; carbinoxamine, dimetindene and etintidine principally bind to AGP; brompheniramine, chlorpheniramine and ranitidine present an important binding to lipoproteins and/or globulins and finally, chlorcyclizine, cinarizine, cyclizine, doxylamine, hydroxyzine, perphenazine and terfenadine do not bind to lipoproteins and/or globulins but bind to HSA and AGP in different extension. The interaction of antihistamines with HSA is determined by the hydrophobicity (direct relationship) and the polar surface area (indirect relationship) of the compounds. The steric parameters and hydrogen bonding character of compounds seems to be related with the binding of antihistamines to AGP. The antihistamine-HSA affinity constants were evaluated and the K(1) values ranged from 7 x 10(2)M(-1) (for doxylamine) to 4 x 10(4)M(-1) (for phenindamine).  相似文献   

7.
《Arabian Journal of Chemistry》2020,13(10):7445-7452
Human alpha (α1)-acid glycoprotein (AGP) is an acute phase protein whose plasma concentration increases several-folds in the presence of various diseases. The variability in AGP plasma concentration is expected to have a huge impact on the drug binding equilibrium. Therefore, a precise measurement of AGP-drug binding is of great demand for drug development. In the current study, an ionic liquid-based aqueous two-phase system combined with affinity capillary electrophoresis (ILATPS/ACE) was utilised in order to improve the accuracy of AGP-drug binding analysis through the measurements of electrophoretic mobilities. The utilisation of ILATPS has shown to have a positive impact on the stability of AGP activity solution during the storage for an extended period of time. In addition, the effect of various alkyl chains (C2-C10) of imidazolium-based ILs with concentrations ranging between 10.00 and 1000.0 μmol L−1 on the AGP binding with the anti-cancer drugs chlorambucil (CHL) and dacarbazine (DAC) was examined by the system developed (ILATPS/ACE). A 100.00 μmol L−1 1-ethyl-3-methylimidazolium chloride (EMImCl) prepared in the physiological buffer conditions containing AGP (5.00–100.00 µmol L−1) has provided an accurate apparent binding constant of 1.99 ± 0.11 and 6.95 ± 0.14 L mmol−1 with CHL and DAC respectively. Apart from the ACE analysis, EMImCl/phosphate buffer solution was found to be a distinguished system that could lengthen the stability of AGP activity for a period of time reaching 90 days during the solution storage at 4.00 °C. This effect is thought to be due to the easy conversion of one-phase EMImCl/phosphate buffer/AGP at the ambient lab temperature into the two-phase solution at refrigerator temperature, 4.00 °C, and vice versa. Therefore, the ILATP/ACE system could be used to enhance the accuracy for other AGP-drug bindings with a fast, easy to use, and cost-effective analysis.  相似文献   

8.
The acute phase response to injury or infection results in alterations in the expression of the plasma proteins produced by the liver. Many of these biomolecules are glycosylated with oligosaccharide chains covalently attached to the polypeptide backbone and the extent and composition of this glycosylation can be altered in a disease-dependent manner. Of particular interest is the observation that the acute phase glycoprotein, alpha-1-acid glycoprotein (AGP) has altered glycosylation in several physiological and pathological conditions. It is posited that changes induced in liver diseases may reflect disease severity and may therefore act as a non-invasive marker of fibrosis. This study has investigated the glycosylation of AGP in the plasma of people with varying degrees of cirrhosis and fibrosis. Hyperfucosylation was observed in all disease samples in comparison to normal plasma and was significantly increased in cirrhosis. Both sialic acid and N-acetylgalactosamine (GalNAc) were negatively associated with fibrosis. Two samples were found to express GalNAc, which as a constituent of the glycosylation of serum proteins is rare. In conclusion, fucose, sialic acid and other aspects of the glycosylation of AGP are influenced by the degree of fibrosis and as such may prove a valuable prognostic indicator of the development of cirrhosis.  相似文献   

9.
Glycosylation is one of the most important post-translational modifications of proteins, and has been widely acknowledged as one of the most important ways to modulate both protein function and lifespan. The acute phase proteins are a major group of serum proteins whose concentration is altered during various pathophysiological conditions. The aim of this paper is to review the structure and functions of the alpha1-acid glycoprotein (AGP). AGP belongs to the subfamily of immunocalins, a group of binding proteins that also have immunomodulatory functions. One of the most interesting features of AGP is that its glycosylation microheterogeneity can be modified during diseases. This aspect is particularly remarkable, since both the immunomodulatory and the binding properties of AGP strongly depend on its carbohydrate composition. For these reasons, AGP can be considered an outstanding model for the study of glycan pattern modification during diseases. This review is focused on the most recent studies on the occurrence of different glycoforms in plasma and tissues and how the appearance of different oligosaccharide patterns during systemic inflammation or diseases can influence AGP's biological functions. The first part of the review will describe the structure of AGP and the several biological functions identified so far for this protein. The second part will be devoted to the post-translational modifications of the oligosaccharides micro-heterogeneity of AGP caused by pathological states. A critical evaluation of the impact of different AGP glycoforms on both its transport and anti-inflammatory features, and how the modifications of the glycan pattern can be utilized in clinical biochemistry, is also discussed.  相似文献   

10.
This paper presents lipophilicity and bio‐mimetic property determination of 15 phytoestrogens, namely biochanin A, daidzein, formononetin, genistein, genistein‐4,7‐dimethylether, prunetin, 3,4,7‐trihydroxyisoflavon, 4,6,7‐trihydroxyisoflavon, 4,6,7‐trimethoxyisoflavon, daidzin, genistin, ononin, sissotrin, coumestrol and coumestrol dimethylether. High‐performance liquid chromatography with fast gradient elution and Caco‐2 cell line were used to determine the physicochemical properties of selected phytoestrogens. Lipophilicity was determined on octadecyl‐sylane stationary phase using pH 2.0 and pH 7.4 buffers. Immobilized artificial membrane chromatography was used for prediction of interaction with biological membranes. Protein binding was measured on human serum albumin and α‐1‐acid‐glycoprotein (AGP) stationary phases. Caco‐2 assay was used as a gold standard for assessing in vitro permeability. The obtained results differentiate phytoestrogens according to their structure where aglycones show significantly higher lipophilicity, immobilized artificial membrane partitioning, AGP binding and Caco‐2 permeability compared with glucosides. However, human serum albumin binding was very high for all investigated compounds. Furthermore, a good correlation between experimentally obtained chromatographic parameters and in silico prediction was obtained for lipophilicity and human serum albumin binding, while the somewhat greater difference was obtained for AGP binding and Caco‐2 permeability.  相似文献   

11.
Alpha-1-acid glycoprotein (AGP) is a plasma glycoprotein produced by the liver that undergoes increased production and altered glycosylation in several physiological and pathological conditions including rheumatoid arthritis. To date, although present in the synovial fluid of rheumatoid arthritis patients, there has been no evidence for the separate extra-hepatic production of AGP. This study indicates that there could be a localized production of AGP in rheumatoid synovial fluid by demonstrating that the glycosylation patterns of AGP differed between the serum and synovial fluid in the same rheumatoid patient. Serum AGP was largely composed of fucosylated tri- and tetra-antennary oligosaccharide chains while the synovial fluid contained mainly bi-antennary chains that were fucosylated to a lesser extent. This structural heterogeneity of glycosylation resulted in functional diversity; serum but not synovial AGP is able to inhibit binding to the cell adhesion molecule E-selectin through expression of antigen sialyl Lewis X.  相似文献   

12.
During the acute phase response (APR) to tissue injury or infection, the liver is responsible for the level of mediators such as cytokines required at the site of inflammation and providing the essential components for wound healing and tissue repair. Additionally there are substantial alterations in the expression of plasma proteins of hepatic origin such as alpha-1-acid glycoprotein (AGP). The APR also results in alterations to the branching, sialylation and fucosylation of the oligosaccharide chains of AGP. This study investigated whether liver damage could be correlated with changes in AGP glycosylation in groups of patients with various liver diseases (alcoholic liver disease, hepatitis B, hepatitis C, cirrhosis). Hyperfucosylation occurred in all cases of liver disease, although the hepatitis B and C samples showed a more significant increase in comparison with the others. Additionally N-acetylgalactosamine (GalNAc) was detected in the majority of the hepatitis C samples, which was unexpected since this monosaccharide is not a usual component of the N-linked oligosaccharide chains. It was also determined by concanavalin (con) A chromatography that there is a shift towards the increased branching of the oligosaccharide chains in inflammatory liver diseases compared to normal serum.  相似文献   

13.
采用浸渍法制备了MoO3/SiO2催化剂,采用粉末X射线衍射、扫描电子显微镜、氮气吸附-脱附、NH3程序升温脱附及吸附吡啶傅里叶变换红外光谱等手段对催化剂进行了表征,并在固定床反应器中考察了催化剂负载量、反应温度、甘油浓度、空速等条件对MoO3/SiO2催化甘油制备烯丙醇反应性能的影响.结果表明,在MoO3的负载量(质量分数)为1%,330℃、常压、40%(质量分数)甘油水溶液和空速为200 h-1的反应条件下,甘油转化率、烯丙醇选择性及时空收率分别可达92.1%,34.8%和6.0 mmol.g-1.h-1.  相似文献   

14.
This study investigates the effect of alpha(1)-acid glycoprotein (AGP) isolated from both normal and rheumatoid plasma on type II collagen fibril formation. Rheumatoid samples were obtained over 2 years from two patients with early arthritis. The glycosylation of each sample was analysed to establish any correlation with fibrillogenesis. Rheumatoid AGP displays increased fucosylation compared to normal AGP. In both patients the fucosylation dipped after 1 year, then rose again over year 2. It is proposed that year 1 corresponds to the acute phase of the disease and the onset of chronic inflammation after this time produces a subsequent increase in fucosylation. Rheumatoid AGP influences type II collagen fibrillogenesis. Native fibrils were produced but with differences in the rate and extent of fibrillogenesis depending on AGP concentration and fucosylation. Low concentrations produced a decrease in fibrillogenesis rate and fibril diameter. High concentrations produced fibrils at a rate and diameter dependent on fucosylation. Highly fucosylated AGP produced narrow fibrils slowly, whereas poorly fucosylated AGP produced thicker fibrils more quickly. We propose that differences in glycosylation (especially fucosylation) of AGP are responsible for differences in collagen fibrillogenesis and this phenomenon may contribute to the exacerbation of cartilage destruction in rheumatoid arthritis.  相似文献   

15.
The chemical mechanism by which the enzyme nitrogenase effects the remarkable reduction of N(2) to NH(3) under ambient conditions continues to be enigmatic, because no intermediate has been observed directly. Recent experimental investigation of the enzymatic consequences of the valine --> alanine modification of residue alpha-70 of the component MoFe protein on the reduction of alkynes, together with EPR and ENDOR spectroscopic characterization of a trappable intermediate in the reduction of propargyl alcohol or propargyl amine (HCC[triple bond]C-CH(2)OH/NH(2)), has localized the site of binding and reduction of these substrates on the FeMo-cofactor and led to proposed eta(2)-Fe coordination geometry. Here these experimental data are modeled using density functional calculations of the allyl alcohol/amine intermediates and the propargyl alcohol/amine reactants coordinated to the FeMo-cofactor, together with force-field calculations of the interactions of these models with the surrounding MoFe protein. The results support and elaborate the earlier proposals, with the most probable binding site and geometry being eta(2)-coordination at Fe6 of the FeMo-cofactor (crystal structure in the Protein Database), in a position that is intermediate between the exo and endo coordination extremes at Fe6. The models described account for (1) the steric influence of the alpha-70 residue, (2) the crucial hydrogen bonding with Nepsilon of alpha-195(His), (3) the spectroscopic symmetry of the allyl-alcohol intermediate, and (4) the preferential stabilization of the allyl alcohol/amine relative to propargyl alcohol/amine. Alternative binding sites and geometries for ethyne and ethene, relevant to the wild-type protein, are described. This model defines the location and scene for detailed investigation of the mechanism of nitrogenase.  相似文献   

16.
The effect of protein binding on the disposition of cephalexin (CEX) and cofazolin (CEZ) was investigated in a simultaneous perfusion system of rat liver and kidney. In the present study, we used bovine serum albumin (BSA) or human serum albumin (HSA) as plasma protein to control the degree of perfusate protein binding of drugs. Total clearance (CLt) of CEX perfused with BSA (0.70 +/- 0.27 ml/min) was slightly smaller than that with HSA (0.89 +/- 0.08 ml/min), corresponding to the unbound fraction of the drug in the perfusate plasma. On the other hand, CLt of CEZ perfused with BSA (0.90 +/- 0.20 ml/min) was significantly larger than that with HSA (0.32 +/- 0.10 ml/min). The unbound fraction of CEZ to BSA (0.703 +/- 0.052) was much larger than that to HSA (0.253 +/- 0.017) and the clearance of the unbound drug did not differ significantly between two kinds of albumin perfusate (1.30 +/- 0.40 ml/min for BSA and 1.26 +/- 0.40 ml/min for HSA). These results suggest that plasma protein binding is an important factor determining the biliary clearance as well as the urinary clearance of drugs.  相似文献   

17.
Diabetes is one of the most widespread diseases characterized by a deficiency in the production of insulin or its ineffectiveness. As a result, the increased concentrations of glucose in the blood lead not only to damage to many of the body's systems but also cause the nonenzymatic glycation of plasma proteins affecting their drug binding. Since the binding ability influences its pharmacokinetics and pharmacodynamics, this is a very important issue in the development of new drugs and personalized medicine. In this study, capillary electrophoresis‐frontal analysis was used to evaluate the affinities between human serum albumin or its glycated form and the first generation of sulfonylurea antidiabetics, since their inadequate concentration may induce hypoglycaemia or on the contrary hyperglycaemia. The binding constants decrease in the sequence acetohexamide > tolbutamide > chlorpropamide > carbutamide both for normal and glycated human serum albumins, with glycated giving lower values. These results provide a more quantitative picture of how these drugs bind with normal and modified human serum albumin and indicate capillary electrophoresis‐frontal analysis to be another tool for examining the changes arising from modifications of albumin, or any other protein, with all its benefits like short analysis time, small sample requirement, and automation.  相似文献   

18.
The concentration of glucocorticoids (GC) in plasma was maintained at stress level, 20-40 micrograms/dl, for 3 days by subcutaneous injection of hydrocortisone (F) in polyvinyl alcohol (PVA) into rats, and the specific binding of [3H]Dexamethasone (Dex) in liver, spleen and brain was determined before and after injection. The binding capacity of glucocorticoid receptor (GR) in liver and spleen was decreased significantly 1 h after injection and maintained at low level for several days after the concentration of GC in plasma had returned to the normal level. The Kd was not altered. The changes of GR in brain was not significant. Thus it may be concluded that GC can down-regulate GR in rats, but with different characteristics in various target organs.  相似文献   

19.
In this research work, an attempt was made to study alteration in glycated serum albumin binding of valsartan and nateglinide using validated HPLC-UV method and ultrafiltration as in vitro protein binding study model. The chromatographic conditions involved stationary phase Kromasil-100 C18 (100?×?4.6?mm, 3.5?µm) with mobile phase of 10?mM phosphate buffer, acetonitrile, isopropyl alcohol in the ratio of 30:65:5 as isocratic mode at a flow rate of 0.8?mL/min; and the eluent was monitored at 218?nm. Protein precipitation technique was used to extract the drugs from human plasma. The calibration curve was found linear in the range from 50 to 5000?ng/mL. Glycation of human serum albumin was achieved at different concentration levels using D-(+)-glucose and glycated human serum albumin (Gly-HSA) were prepared. Valsartan and nateglinide were not affected the plasma protein binding of each other when studied using HSA. The unbound fraction of valsartan and nateglinide was increased to 10–20 times when spiked with Gly-HSA. About 20% increase in unbound fraction of valsartan was observed when spiked with 10?µg/mL of nateglinide. Furthermore, the unbound fraction of nateglinide was increased nearly to 10% more when incubated with Gly-HSA as compare to recombinant human serum albumin.  相似文献   

20.
A kinetic study of the oxidation of allyl alcohol by potassium hexacyanoferrate (III) in the presence of palladium (II) chloride is reported. The reaction was observed by measuring the disappearance of the potassium hexacyanoferrate (III) spectrophotometrically. The reaction is first order with respect to allyl alcohol and palladium (II) chloride, inverse second order with respect to [Cl?], and zero order with respect to potassium hexacyanoferrate (III). The rate is found to increase linearly with hydroxyl ion concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号