首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smith DM  Park CW  Ibers JA 《Inorganic chemistry》1996,35(23):6682-6687
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN).  相似文献   

2.
Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.  相似文献   

3.
[Co(III)Cp(2)](+)[Fe(III)I(4)](-) (Cp = cyclopentadienyl) prepared by the double oxidation of FeI(2) and CoCp(2) with iodine exhibits a 30 degrees C thermal hysteresis in magnetic susceptibility between 134 and 164 K that is attributed to a phase transition to a disordered triclinic unit cell from an ordered monoclinic unit cell upon cooling.  相似文献   

4.
By interaction of MoX(3)(THF)(3) with [Cat]X in THF, the salts [Cat][MoX(4)(THF)(2)] have been synthesized [X = I, Cat = PPh(4), NBu(4), NPr(4), (Ph(3)P)(2)N; X = Br, Cat = NBu(4), PPh(4) (Ph(3)P)(2)N]. Mixed-halide species [MoX(3)Y(THF)(2)](-) (X, Y = Cl, Br, I) have also been generated in solution and investigated by (1)H-NMR. When the tetraiodo, tetrabromo, and mixed bromoiodo salts are dissolved in CH(2)Cl(2), clean loss of all coordinated THF is observed by (1)H-NMR. On the other hand, [MoCl(4)(THF)(2)](-) loses only 1.5 THF/Mo. The salts [Cat](3)[Mo(3)X(12)] (X = Br, I) have been isolated from [Cat][MoX(4)(THF)(2)] or by running the reaction between MoX(3)(THF)(3) and [Cat]X directly in CH(2)Cl(2). The crystal structure of [PPh(4)](3)[Mo(3)I(12)] exhibits a linear face-sharing trioctahedron for the trianion: triclinic, space group P&onemacr;; a = 11.385(2), b = 12.697(3), c = 16.849(2) ?; alpha = 76.65(2), beta = 71.967(12), gamma = 84.56(2) degrees; Z = 1; 431 parameters and 3957 data with I > 2sigma(I). The metal-metal distance is 3.258(2) ?. Structural and magnetic data are consistent with the presence of a metal-metal sigma bond order of (1)/(2) and with the remaining 7 electrons being located in 7 substantially nonbonding orbitals. The ground state of the molecule is predicted to be subject to a Jahn-Teller distortion, which is experimentally apparent from the nature of the thermal ellipsoid of the central Mo atom. The [Mo(3)X(12)](3)(-) ions reacts with phosphines (PMe(3), dppe) to form products of lower nuclearity by rupture of the bridging Mo-X bonds.  相似文献   

5.
Double chelate coordination of [Cu(Ph3P)2]+ stabilizes the radical anion of 2,2′-azobis(5-chloropyrimidine), which exhibits a N–N bond length of 1.345(7) Å in the complex (see picture). This is consistent with a one-electron reduced azo functionality.  相似文献   

6.
Although the [CB(11)H(12)](-) carborane does not exhibit an absorption band in UV, its triplet excited state can be generated upon 308 nm laser excitation; also unexpectedly carborane acts as electron donor forming a charge transfer complex with methylviologen that upon illumination gives rise to viologen radical cation.  相似文献   

7.
Addition of the carbene 1,3-dimesitylimidazol-2-ylidene (IMes) to a toluene solution of Ag[closo-CB(11)H(12)] results in the formation of the complex [(IMes)(2)Ag](2)[Ag(2)[closo-CB(11)H(12)](4)], the anionic component of which contains two silver(I) centers bridged by two carboranes in addition to one terminally bound carborane on each metal, in the solid-state. Comparison of the observed (11)B[(1)H] NMR chemical shifts of [(IMes)(2)Ag](2)[Ag(2)[closo-CB(11)H(12)](4)] or Ag[closo-CB(11)H(12)] with [NBu(4)][closo-CB(11)H(12)] in CD(2)Cl(2) demonstrates that the silver ion interacts significantly with the cage in solution. Theoretical investigations using the ab initio/GIAO/NMR method of [closo-CB(11)H(12)](-) and Na[closo-CB(11)H(12)] as model geometries for the silver salts support experimental evidence for these Ag...[BH] interactions in solution.  相似文献   

8.
9.
Ethylenediamine (en) reacts with the polyhedral borane anion [n-B(20)H(18)](2)(-), in the presence or absence of strong nonnucleophilic auxiliary bases, to produce the [ae-B(20)H(17)(en)](3)(-) anion. In either case, substitution is accompanied, to an approximately equal extent, by reduction of the starting material to form [a(2)()-B(20)H(18)](4)(-). As found with similar substituted systems derived from this 20-boron structure, [ae-B(20)H(17)(en)](3)(-) may be conveniently rearranged to the [a(2)()-B(20)H(17)(en)](3)(-) anion. A more convenient synthesis of the known [ae-B(20)H(17)NH(3)](3)(-) ion, which employs acetonitrile as the source of the NH(3) ligand instead of liquid ammonia, is also described.  相似文献   

10.
Heine J  Dehnen S 《Inorganic chemistry》2010,49(23):11216-11222
Water-soluble salts of monomeric, dimeric, and/or trimeric telluridoindate anions, [K(5)(H(2)O)(2.16)][InTe(4)] (1), [K(5)(H(2)O)(5)][InTe(4)] (2), [K(6)(H(2)O)(6)][In(2)Te(6)] (3), [K(16)(H(2)O)(9.62)][InTe(4)](2)[In(2)Te(6)] (4), [K(133)(H(2)O)(24)][In(3)Te(10)](12)Te(0.5) (5), and [Rb(6)(H(2)O)(6)][In(2)Te(6)] (6), were prepared by a fusion/extraction method starting from the elements and characterized by single-crystal X-ray diffraction as well as spectroscopic methods. The compounds are the first hydrates of telluridoindate salts and thus point toward an aqueous coordination chemistry with binary In/Te ligands. Both crystallization from the extracts as mixtures of salts as well as preliminary spectroscopic investigation of the solutions indicate the presence of an equilibrium of different anionic species. Here, the indates differ from related stannates, which also show pH-dependent aggregation, but to a much lesser extent and in a better distinguishable manner. We present syntheses and crystal structures and discuss observation of the coexistence of different anions both in the solid state and in solution.  相似文献   

11.
12.
Black single crystals of [Lu(Db18c6)(H2O)3(thf)6]4(I3)2(I5)6(I8)(I12) were obtained from lutetium, I2 and Db18c6 (dibenzo‐18‐crown‐6) in THF solution. In the bulky cation, Lu3+ is surrounded by nine oxygen atoms, six of Db18c6 and three of water molecules to which two THF molecules are attached each. Meanwhile, four polyiodide anions, (I3), (I5), (I8)2– and (I12)2–, in a 2:6:1:1 ratio form a three‐dimensional network and leave space for the bulky cations.  相似文献   

13.
Dias HV  Jin W  Kim HJ  Lu HL 《Inorganic chemistry》1996,35(8):2317-2328
The fluorinated tris(pyrazolyl)borate ligands [HB(3,5-(CF(3))(2)Pz)(3)](-) and [HB(3-(CF(3))Pz)(3)](-) (where Pz = pyrazolyl) have been synthesized as their sodium salts from the corresponding pyrazoles and NaBH(4) in high yield. These sodium complexes and the related [HB(3,5-(CF(3))(2)Pz)(3)]K(DMAC) were used as ligand transfer agents in the preparation of the copper and silver complexes [HB(3,5-(CF(3))(2)Pz)(3)]Cu(DMAC), [HB(3,5-(CF(3))(2)Pz)(3)]CuPPh(3), [HB(3,5-(CF(3))(2)Pz)(3)]AgPPh(3), and [HB(3-(CF(3))Pz)(3)]AgPPh(3). Metal complexes of the fluorinated [HB(3,5-(CF(3))(2)Pz)(3)](-) ligand have highly electrophilic metal sites relative to their hydrocarbon analogs. This is evident from the formation of stable adducts with neutral oxygen donors such as H(2)O, dimethylacetamide, or thf. Furthermore, the metal compounds derived from fluorinated ligands show fairly long-range coupling between fluorines of the trifluoromethyl groups and the hydrogen, silver, or phosphorus. The solid state structures show that the fluorines are in close proximity to these nuclei, thus suggesting a possible through-space coupling mechanism. Crystal structures of the sodium adducts exhibit significant metal-fluorine interactions. The treatment of [HB(3,5-(CF(3))(2)Pz)(3)]Na(H(2)O) with Et(4)NBr led to [Et(4)N][HB(3,5-(CF(3))(2)Pz)(3)], which contains a well-separated [Et(4)N](+) cation and the [HB(3,5-(CF(3))(2)Pz)(3)](-) anion in the solid state. Crystal data with Mo Kalpha (lambda = 0.710 73 ?) at 193 K: [HB(3,5-(CF(3))(2)Pz)(3)]Na(H(2)O), C(15)H(6)BF(18)N(6)NaO, a = 7.992(2) ?, b = 15.049(2) ?, c = 9.934(2) ?, beta = 101.16(2) degrees, monoclinic, P2(1)/m, Z = 2; [{HB(3-(CF(3))Pz)(3)}Na(thf)](2), C(32)H(30)B(2)F(18)N(12)Na(2)O(2), a = 9.063(3) ?, b = 10.183(2) ?, c = 12.129(2) ?, alpha = 94.61(1) degrees, beta = 101.16(2) degrees, gamma = 95.66(2) degrees, triclinic, &Pmacr;1, Z = 1; [HB(3,5-(CF(3))(2)Pz)(3)]Cu(DMAC), C(19)H(13)BCuF(18)N(7)O, a = 15.124(4) ?, b = 8.833(2) ?, c = 21.637(6) ?, beta = 105.291(14) degrees, monoclinic, P2(1)/n, Z = 4; [HB(3,5-(CF(3))(2)Pz)(3)]CuPPh(3), C(33)H(19)BCuF(18)N(6)P, a = 9.1671(8) ?, b = 14.908(2) ?, c = 26.764(3) ?, beta = 94.891(1) degrees, monoclinic, P2(1)/c, Z = 4; [HB(3,5-(CF(3))(2)Pz)(3)]AgPPh(3).0.5C(6)H(14), C(36)H(26)AgBF(18)N(6)P, a = 13.929(2) ?, b = 16.498(2) ?, c = 18.752(2) ?, beta = 111.439(6) degrees, monoclinic, P2(1)/c, Z = 4; [Et(4)N][HB(3,5-(CF(3))(2)Pz)(3)], C(23)H(24)BF(18)N(7), a = 10.155(2) ?, b = 18.580(4) ?, c = 16.875(5) ?, beta = 99.01(2) degrees, monoclinic, P2(1)/n, Z = 4.  相似文献   

14.
15.
The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.  相似文献   

16.
17.
The structure of [PPh(3)(benzyl)][B(10)H(11)] was determined at -123 degrees C and 24 degrees C by single-crystal X-ray analyses. The B(10) core of [B(10)H(11)](-) is similar in shape to that of [B(10)H(10)](2)(-). The 11th H atom asymmetrically caps a polar face of the cluster and shows no tendency for disorder in the solid state. Variable temperature multinuclear NMR studies shed light on the dynamic nature of [B(10)H(11)](-) in solution. In addition to the fluxionality of the cluster H atoms, the boron cage is fluxional at moderate temperatures, in contrast to [B(10)H(10)](2)(-). Multiple exchange processes are believed to take place as a function of temperature. Results of ab initio calculations are presented. Crystal data: [PPh(3)(benzyl)][B(10)H(11)] at -123 degrees C, P2(1)/c, a = 9.988(2) A, b = 18.860(2) A, c = 15.072(2) A, beta = 107.916(8) degrees, V = 2701.5(7) A(3), Z = 4; [PPh(3)(benzyl)][B(10)H(11)] at 24 degrees C, P2(1)/c, a = 10.067(5) A, b = 19.009(9) A, c = 15.247(7) A, beta = 107.952(9) degrees, V = 2775(2) A(3), Z = 4.  相似文献   

18.
Thephotochemical reaction of [3(3)](1,3,5)cyclophane 2, which is a photoprecursor for the formation of propella[3(3)]prismane 18, was studied using a sterilizing lamp (254 nm). Upon photolysis in dry and wet CH2Cl2 or MeOH in the presence of 2 mol/L aqueous HCl solution, the cyclophane 2 afforded novel cage compounds comprised of new skeletons, tetracyclo[6.3.1.0.(2,7)0(4,11)]dodeca-5,9-diene 43, hexacyclo[6.4.0.0.(2,6)0.(4,11)0.(5,10)0(9,12)]dodecane 44, and pentacyclo[6.4.0.0.(2,6)0.(4,11)0(5,10)]dodecane 45. All of these products were confirmed by the X-ray structural analyses. A possible mechanism for the formation of these photoproducts via the hexaprismane derivative 18 is proposed. The photophysical properties in the excited state of the [3n]cyclophanes ([3n]CP, n = 2-6) were investigated by measuring the emission spectra and determining the quantum yields and lifetimes of the fluorescence. All [3n]CPs show excimeric fluorescence without a monomeric one. The lifetime of the excimer fluorescence becomes gradually longer with the increasing number of the trimethylene bridges. The [3n]CPs also shows excimeric phosphorescence spectra without vibrational structures for n = 2, 4, and 5, while phosphorescence is absent for n = 3 and 6. With an increase in symmetry of the benzene skeleton in the [3(3)]- and [3(6)]CPs, the probability of the radiation (phosphorescence) process from the lowest triplet state may drastically decrease.  相似文献   

19.

Reactions of trans-carbonyl(chloro)[bis(triphenylphosphine)]rhodium(I): trans-ClRh(CO)(PPh3)2 with substituted cyclopentadienyl tricarbonyl molybdenum anions, [Mo(CO)3 5 -C5H4R)]? (R=H; COCH3) in tetrahydrofuran (THF) at 55°C for 24 h yielded two monometallic complexes as by-products: [Rh(CO)(PPh3)(η5-C5H4R)] (R = H (1a); COCH3 (2a)) and two main heterobimetallic compounds: [RhMo(CO)4(PPh3)25-C5H4R)] (R = H (1b); COCH3 (2b)). These compounds were characterized by elemental analysis, IR and 1H NMR spectra. The molecular structure of (2a) was determined by X-ray diffraction.  相似文献   

20.
Two low-dimensional compounds, KSnAsS(5) and K(2)SnAs(2)S(6), were prepared using liquid polythioarsenate salts, and the results differ from those obtained with the well studied thiophosphate flux. KSnAsS(5) crystallizes in the orthorhombic space group Pbam with cell parameters of a = 8.136(2) A, b = 13.784(4) A, c = 7.428(2) A. KSnAsS(5) features the unusual pyramidal species [AsS(2)(S(2))](3-). K(2)SnAs(2)S(6) crystallizes in the trigonal space group P3 macro with cell parameters a = 6.717(5) A, b = 7.204(8) A, gamma = 120 degrees. The compounds were obtained by controlling the Lewis basicity of the K(2)S/As(2)S(3)/S flux. The optical, thermal, and spectroscopic properties of the compounds are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号