首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optimized geometry and vibrational frequencies of P-N,N-dimethylaminobenzylidenemalononitrile (DBM) were obtained by ab initio HF and DFT/B3LYP levels with complete relaxation in the potential energy surface using 6-31++G(d,p) and 6-311++G(d,p) basis sets. The Fourier-transform infrared (FT-IR) spectrum of DBM has been recorded in the region 4000-400 cm(-1). The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR spectrum. The calculated frequencies are in good agreement with the experimental frequencies.  相似文献   

2.
In this work, the experimental and theoretical spectra of 4-chloro-2-bromoacetophenone (4C2BAP) are studied. FT-IR and FT-Raman spectra of title molecule have been recorded in the region 4000-100 cm(-1). The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock and density functional method (B3LYP) with the 6-31G (d, p) and 6-311G (d, p) basis sets. The vibrational frequencies are calculated and scaled values are compared with the experimental FT-IR and FT-Raman spectra. The DFT (B3LYP/6-311G (d, p)) calculations are more reliable than the ab initio HF/6-311G (d, p) calculations for the vibrational study of 4C2BAP. The optimized geometric parameters (bond lengths and bond angles) are compared with experimental values of the molecule. The alteration of vibrational bands of the carbonyl and acetyl groups due to the presence of halogens (Cl and Br) in the base molecule is also investigated from their characteristic region of linked spectrum.  相似文献   

3.
Optimized geometry and harmonic vibrational frequency of 2-dicyanovinyl-5-(4- ethoxyphenyl)thiophene (C16H12N2OS) are calculated at the HF/6-31++G(d,p) and B3LYP/6- 311++G(d,p) levels. Mulliken charges in the ground state are also calculated. The research shows the presence of intermolecular interaction in the title compound. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. A detailed interpretation of the infrared spectra of the title compound is reported. The theoretical spectrograms for IR spectra of the title compound have been constructed. The isotropic chemical shift computed by 13C and 1H NMR analyses also shows good agreement with the experimental observations.  相似文献   

4.
In this work, the experimental and theoretical vibrational spectra of 2-chloro-4-methylaniline (2Cl4MA, C7H8NCl) were studied. FT-IR and FT-Raman spectra of 2Cl4MA in the liquid phase have been recorded in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock (HF) and density functional method (B3LYP) with the 6-31G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p) and 6-311G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) basis sets. The vibrational frequencies have been calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The DFT-B3LYP/6-311++G(d,p) calculations have been found more reliable than the ab initio HF/6-311++G(d,p) calculations for the vibrational study of 2Cl4MA. The optimized geometric parameters (bond lengths and bond angles) were compared with experimental values of aniline and p-methylaniline molecules.  相似文献   

5.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

6.
In this work, FT-IR and FT-Raman spectra of 1-methoxynapthalene (C(11)H(10)O) have been reported in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Density functional method (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, vibrational wavenumbers and intensity of the vibrational bands. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on density functional theory (DFT) method with B3LYP/3-21G, B3LYP/6-31G, B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) basis sets. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The optimized geometric parameters are compared with experimental values of naphthoic acid. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The effects due to the substitutions of methyl group and carbon-oxygen bond are also investigated. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule.  相似文献   

7.
FT-IR (4000-100 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectra of solid sample of 4-chloro-2-fluoro toluene (4Cl2FT) have been recorded using Bruker IFS 66 V spectrometer. Ab initio-HF (HF/6-311++G (d, p)) and DFT (B3LYP/6-311++G and B3PW91/6-311++G (d, p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, depolarization ratios, IR intensities, Raman activities. The vibrational frequencies are calculated and scaled values are compared with FT-IR and FT-Raman experimental values. The isotropic HF and DFT analyses showed good agreement with experimental observations. The differences between the observed and scaled wave number values of most of the fundamentals are very small in B3LYP than HF. Comparison of the simulated spectra provides important information about the ability of the computational method (B3LYP) to describe the vibrational modes. The influences of substitutions on the geometry of molecule and its normal modes of vibrations have also been discussed. The changes made by substitutions on the benzene are much responsible for the non-linearity of the molecule. This is an attractive entity for the future studies of non-linear optics.  相似文献   

8.
The FT-IR and FT-Raman spectra of 1-bromo-4-chlorobenzene (1-Br-4-CB) have been recorded using Bruker IFS 66V spectrometer in the region of 4000-100 cm(-1). Ab-initio-HF (HF/6-311+G (d, p)) and DFT (B3LYP/6-31++G (d, p)/6-311++G (d, p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, depolarization ratios, IR intensities, Raman activities. The vibrational frequencies are calculated and scaled values are compared with FT-IR and FT-Raman experimental values. Comparison of simulated spectra with the experimental spectra provides important information, the computational method have the ability to describe the vibrational methods. The frequency estimation analysis on HF and DFT is made. The impact of di-substituted halogens on the benzene molecule has also been discussed.  相似文献   

9.
The room temperature attenuated total reflection Fourier transform infrared spectrum of the 2-(4-methoxyphenyl)-1H-benzo[d]imidazole has been recorded with diamond/ZnSe prism. The conformational behaviour, structural stability of optimized geometry, frequency and intensity of the vibrational bands of the title compound were investigated by utilizing ab initio calculations with 6-311G** basis set at HF, B3LYP, BLYP, B3PW91 and mPW1PW91 levels. The harmonic vibrational frequencies were calculated and scaled values have been compared with experimental IR spectrum. The observed and the calculated frequencies are found to be in good agreement. The theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions using VEDA 4 program. Furthermore, the optimal uniform scaling factors calculated for the title compound are 0.9120, 0.9596, 0.9660, 0.9699, and 0.9993 for HF, mPW1PW91, B3PW91, B3LYP and BLYP methods, respectively.  相似文献   

10.
The conformational stability and the three rotor internal rotations in 3-chloro- and 3-bromo-1-propanols were investigated by DFT-B3LYP/6-311+G and ab initio MP2/6-311+G, MP3/6-311+G and MP4(SDTQ)//MP3/6-311+G levels of theory. On the calculated potential energy surface twelve distinct minima were located all of which were not predicted to have imaginary frequencies at the B3LYP level of theory. The calculated lowest energy minimum in the potential curves of both molecules was predicted to correspond to the Gauche-gauche-trans (Ggt) conformer in excellent agreement with earlier microwave and electron diffraction results. The equilibrium constants for the conformational interconversion of the two 3-halo-1-propanols were calculated at the B3LYP/6-311+G level of calculation and found to correspond to an equilibrium mixture of about 32% Ggt, 18% Ggg1, 13% Tgt, 8% Tgg and 8% Gtt conformations for 3-chloro-1-propanol and 34% Ggt, 15% Tgt, 13% Ggg1, 9% Tgg and 7% Gtt conformations for 3-bromo-1-propanol at 298.15K. The nature of the high energy conformations was verified by carrying out solvent experiments using formamide ( epsilon=109.5) and MP3 and MP4//MP3 calculations. The vibrational frequencies of each molecule in its three most stable forms were computed at the B3LYP level and complete vibrational assignments were made based on normal coordinate calculations and comparison with experimental data of the molecules.  相似文献   

11.
In the present study, the FT-IR and FT-Raman spectra of 4-chloro-2-methylaniline (4CH2MA) have been recorded in the range of 4000-100 cm(-1). The fundamental modes of vibrational frequencies of 4CH2MA are assigned. All the geometrical parameters have been calculated by HF and DFT (LSDA, B3LYP and B3PW91) methods with 6-31G (d, p) and 6-311G (d, p) basis sets. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for aniline and some substituted aniline. The harmonic and anharmonic vibrational wavenumbers, IR intensities and Raman activities are calculated at the same theory levels used in geometry optimization. The calculated frequencies are scaled and compared with experimental values. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The impact of substitutions on the benzene structure is investigated. The molecular interactions between the substitutions (Cl, CH(3) and NH(2)) are also analyzed.  相似文献   

12.
2-(4-Fluorobenzylideneamino)-3-mercaptopropanoic acid (4-FC) was synthesized through the reaction of 4-fluorobenzaldehyde and l-cysteine in refluxing EtOH. Its structure was verified by (1)H NMR, FT-IR and Raman. The ground-state geometries were optimized at B3LYP/6-31G**, B3LYP/6-31G*, HF/6-31G** and HF/6-31G* levels without symmetry constrains, respectively. The vibrational wavenumbers of 4-FC were calculated at same level. The scaled theoretical spectra using B3LYP methods, which are in a good agreement with the experimental ones, are superior to those using HF methods.  相似文献   

13.
The optimized molecular structure, atomic charges, vibrational frequencies, thermodynamic properties, nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-Vis) spectral data of pentacarbonyl(4-methylpyridine)chromium(0) complex have been investigated by performing ab initio Hartree-Fock (HF) and density functional theory, B3LYP, B3PW91 and BE1PBE methods with 6-311G, 6-311+G(3d,3p) and 6-31G(d,p) basis set. The calculated NMR data at 6-311G basis set, vibrational frequencies at 6-311+G(3d,3p) basis set and the optimized geometric bond lengths and bond angles at 6-31G(d,p) basis set are in good agreement with the corresponding experimental values. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been simulated. In addition, the transition state and energy band gap and infrared intensities have also been reported.  相似文献   

14.
The optimized molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) (1)H and (13)C NMR shift values of 5-(4-bromophenylamino)-2-methylsulfanylmethyl-2H-1,2,3-triazol-4-carboxylic acid ethyl ester have been calculated by using Hartree-Fock (HF) and density functional method (DFT/B3LYP) with 6-31G(d), 6-31G(d,p) and LANL2DZ basis sets. The optimized molecular geometric parameters were presented and compared with the data obtained from X-ray diffraction. In order to fit the calculated harmonic wavenumbers to the experimentally observed ones, scaled quantum mechanics force field (SQM FF) methodology was proceeded. Correlation factors between the experimental and calculated (1)H chemical shift values of the title compound in vacuum and in CHCl(3) solution by using the conductor-like screening continuum solvation model (COSMO) were reported. The calculated results showed that the optimized geometry well reproduces the crystal structure. The theoretical vibrational frequencies and chemical shifts are in very good agreement with the experimental data. In solvent media the energetic behavior of the title compound was also examined by using the B3LYP method with the 6-31G(d) basis set, applying the COSMO model. The obtained results indicated that the total energy of the title compound decreases with increasing polarity of the solvent. Furthermore, molecular electrostatic potential (MEP), natural bond orbital (NBO) and frontier molecular orbitals (FMOs) of the title compound were performed by the B3LYP/LANL2DZ method, and also thermodynamic parameters for the title compound were calculated at all the HF and B3LYP levels.  相似文献   

15.
Dimethyl-2-(5-acetyl-2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-(triphenylphosphinylidene)succinate has been synthesized and characterized by elemental analysis, FT-IR and 1H, 13C and 31P NMR. The vibrational wavenumbers, gauge including atomic orbital (GIAO) 1H and 13C chemical shift values of title compound in the ground state have been computed with density functional theory method (DFT) and the B3LYP functional. The basis sets used are 6-311G(d,p) and 6-31G(d). The harmonic vibrational wavenumbers have been computed and the scaled values have been compared with the experimental FT-IR spectra. The complete assignments have been performed on basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Most of the computed wavenumbers are found to be in good agreement with the observed spectrum.  相似文献   

16.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 4-N,N'-dimethylamino pyridine (4NN'DMAP). The Fourier transform infrared and Fourier transform Raman spectra of 4NN'DMAP was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-31G(d,p) and 6-311++G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the title compound were performed at same level of theories. The scaled theoretical wavenumber showed very good agreement with the experimental values. The thermodynamic functions of the title compound was also performed at HF/6-31G(d,p) and B3LYP/6-311++G(d,p) level of theories. A detailed interpretation of the infrared and Raman spectra of 4NN'DMAP was reported. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title molecule have been constructed.  相似文献   

17.
The molecular structure, conformafional stability, and vibrational frequencies of ten-butyl N-(2- bromocyclohex-2-enyl)-N-(2-furylmethyl)carbamate (TBBFC) were investigated by utilizing the Hartree-Fock (HF) and density functional theory (DFT) ab initio calculations with 6-31G ^* and 6-31G^* * basis sets. The optimized bond length and angle values obtained by HF method showed the best agreement with the experimental values. Comparison of the observed and calculated fundamental vibrational frequencies indicated that B3LYP was superior to the scaled HF approach for molecular problems. Optimal uniform scaling factors calculated for the title compound are 0.899/0.904, 0.958/0.961, and 0.988/0.989 for HF, B3LYP, and BLYP (6-31G ^*/6-31G ^* *), respectively.  相似文献   

18.
The FT-IR and FT-Raman spectra of m-Xylol molecule have been recorded using Bruker IFS 66V spectrometer in the range 4000-100cm(-1). The molecular geometry and vibrational frequencies in the ground state are evaluated using the Hartree-fock (HF) and B3LYP with 6-31+G (d, p), 6-31++G (d, p) and 6-311++G (d, p) basis sets. The computed frequencies are scaled using a suitable scale factors to yield good agreement with the observed values. The HF and DFT analysis agree well with experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and B3LYP methods indicate that B3LYP/6-311++G (d, p) is superior to HF/6-31+G (d, p) for molecular vibrational problems. The complete data of this title compound provide some useful information for the study of substituted benzenes. The influences of Methyl groups on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

19.
FT-IR and FT-Raman spectra of 2-hydroxy-3-methoxy-5-nitrobenzaldehyde (HMN) and 2-methoxy-1-naphthaldehyde (MN) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structure, conformational stability, geometry optimization, vibrational frequencies have been investigated. The total energy calculations of HMN and MN were tried for various possible conformers. The spectra were interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) using B3LYP/6-31G* and B3LYP/6-311+G** level and basis set combinations and was scaled using various scale factors yielding good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号