首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This stability of Sb(III) and Sb(V) species was studied during single extraction from soils by water. EDTA, diluted H2SO4 and H3PO4, and oxalic acid/oxalate solutions, with and without ascorbic acid, were used as stabilizing reagent of both Sb species. Antimony redox speciation in soil extracts was performed by selective hydride generation-atomic fluorescence spectrometry. Simulated extraction procedures (without soil) showed that, except in oxalate medium, Sb(III) was oxidized to Sb(V), and this reaction was avoided with ascorbic acid. Recovery studies from a spiked agricultural soil showed that no oxidation but sorption of Sb(III) occurred during the extraction process in water and H2SO4 medium, and quantitative oxidation in EDTA and oxalate medium. With ascorbic acid, this oxidation was totally avoided in EDTA and partially avoided in oxalate solution. A new sequential extraction procedure was proposed and applied to the fractionation and redox speciation of antimony in agricultural soils, using EDTA + ascorbic acid, pH 7 (available under complexing and moderately reducible conditions); oxalic acid/oxalate + ascorbic acid (extractable in reducible conditions) and HNO3 + HCl + HF (residual fraction). The proposed extraction scheme can provide information about the availability and mobility of antimony redox species in agricultural soils.  相似文献   

2.
Yu C  Cai Q  Guo ZX  Yang Z  Khoo SB 《The Analyst》2002,127(10):1380-1385
A novel and simple method for inorganic antimony speciation is described based on selective solid phase extraction (SPE) separation of antimony(III) and highly sensitive inductively coupled plasma mass spectrometric (ICP-MS) detection of total antimony and antimony(V) in the aqueous phase of the sample. Non-polar SPE cartridges, such as the Isolute silica-based octyl (C8) sorbent-containing cartridge, selectively retained the Sb(III) complex with ammonium pyrrolidine dithiocarbamate (APDC), while the uncomplexed Sb(V) remained as a free species in the solution and passed through the cartridge. The Sb(III) concentration was calculated as the difference between total antimony and Sb(V) concentrations. The detection limit was 1 ng L(-1) antimony. Factors affecting the separation and detection of antimony species were investigated. Acidification of samples led to partial or complete retention of Sb(V) on C8 cartridge. Foreign ions tending to complex with Sb(III) or APDC did not interfere with the retention behavior of the Sb(III)-APDC complex. This method has been successfully applied to antimony speciation of various types of water samples.  相似文献   

3.
The biological activity of antimony depends on the oxidation state. The Sb(III) and Sb(V) states can be distinguished, even in the ng l?1 range, by coupling extraction with ammonium pyrrlidenedithiocarbamate into methyl isobutyl ketone (APDC/MIBK), or N-benzoyl-N-phenylhydroxylamine (BPHA) into chloroform, with anodic stripping voltammetry (a.s.v.). After complex formation with APDC in acetate-buffered medium, Sb(III), but not Sb(V), is extracted into MIBK and quantified by a.s.v. Antimony(V) is quantified in the aqueous phase after removal of Sb(III) by extraction with BPHA into chloroform from the medium acidified with nitric acid. The applicability of the proposed separation/a.s.v. method is demonstrated for samples of rain, snow and water from a dredging operation. The stability of the two antimony species is examined for natural waters with Sb(III) and Sb(V) added; possibilities of stabilization are described. The precedures should be suitable for speciation of antimony in relatively unpolluted waters.  相似文献   

4.
Liquid chromatography is the most suitable technique for antimony speciation in several types of samples. However, efficiency can be poor for some of these peaks, especially Sb(III) and Me3SbCl2 (TMSb). Weak and strong anion exchange stationary phases are mainly used for antimony speciation in several chromatographic conditions. The present study examines the possible contribution of the interaction between antimony species (Sb(III), Sb(V) and TMSb) and stationary phase support to the overall retention mechanism in their chromatographic separation. Several SPE cartridges, selected from those mainly used as support in anion exchange columns, were assayed. Sb (V) was quantitatively eluted from the PSDVB (polystyrene divinylbenzene) and SiO2 phases, showing the absence of interaction. Sb (III) showed some interaction with the PSDVB phase; TMSb showed strong retention with all the cartridges studied and it was only eluted from the PSDVB phase.  相似文献   

5.
A novel method for prevention of the oxidation of Sb(III) during sample pretreatment, preconcentration of Sb(III) and Sb(V) with nanometer size titanium dioxide (rutile) and speciation analysis of antimony, has been developed. Antimony(III) could be selectively determined by flow injection-hydride generation-atomic absorption spectrometry, coexisting with Sb(V). Trace Sb(III) and Sb(V) were all adsorbed onto 50 m g TiO2 from 500 ml solution at pH 3.0 within 15 min, then eluted by 10 ml of 5 mol/l HCl solution. One eluent was directly used for the analysis of Sb(III); to the other eluent was added 0.5 g KI and 0.2 g thiourea to reduce Sb(V) to Sb(III), then the mixture was used for the determination of total antimony. The antimony(V) content is the mathematical difference of the two concentrations. Detection limits (based on 3sigma of the blank determinations, n=11) of 0.05 ng/ml for Sb(III) and 0.06 ng/ml for Sb(V), were obtained.  相似文献   

6.
Speciation analysis of antimony in marine biota is not well documented, and no specific extraction procedure of antimony species from algae and mollusk samples can be found in the literature. This work presents a suitable methodology for the speciation of antimony in marine biota (algae and mollusk samples). The extraction efficiency of total antimony and the stability of Sb(III), Sb(V) and trimethylantimony(V) in different extraction media (water at 25 and 90 °C, methanol, EDTA and citric acid) were evaluated by analyzing the algae Macrosystis integrifolia (0.55 ± 0.04 μg Sb g−1) and the mollusk Mytilus edulis (0.23 ± 0.01 μg Sb g−1). The speciation analysis was performed by anion exchange liquid chromatography (post-column photo-oxidation) and hydride generation atomic fluorescence spectrometry as detection system (HPLC-(UV)-HG-AFS). Results demonstrated that, based on the extraction yield and the stability, EDTA proved to be the best extracting solution for the speciation analysis of antimony in these matrices. The selected procedure was applied to antimony speciation in different algae samples collected from the Chilean coast. Only the inorganic Sb(V) and Sb(III) species were detected in the extracts. In all analyzed algae the sum of total antimony extracted (determined in the extracts after digestion) and the antimony present in the residue was in good agreement with the total antimony concentration determined by HG-AFS. However, in some extracts the sum of antimony species detected was lower than the total extracted, revealing the presence of unknown antimony species, possibly retained on the column or not detected by HPLC-(UV)-HG-AFS. Further work must be carried out to elucidate the identity of these unknown species of antimony.  相似文献   

7.
The capabilities and limitations of the continuous flow injection hydride generation technique, coupled to atomic absorption spectrometry, for the speciation of major antimony species in seawater, were investigated. Two pre-concentration techniques were examined. After continuous flow injection hydride generation and collection onto a graphite tube coated with iridium, antimony was determined by graphite furnace atomic absorption spectrometry. The low detection limits obtained (∼5 ng l−1 for Sb(III) and ∼10 ng l−1 for Sb(V) for 2.5 ml seawater samples) permitted the determination of Sb(III) and total antimony in seawater with the use of selective hydride generation and on-line UV photooxidation. The number of samples that can be analyzed is about 15 per hour for Sb(III) determinations and 10 per hour for total antimony determinations. The analysis of seawater samples showed that Sb(V) was the predominant species, even in the presence of important biological activity.  相似文献   

8.
A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.  相似文献   

9.
Meglumine antimonate is the active of Glucantime? used for the treatment of leishmaniasis, a tropical disease caused by parasitic protozoa, and it is estimated that 12 million people worldwide are affected. This drug mainly contains Sb(V) under the form of an organic complex with N-methylglucamine (NMG). During the synthesis of this molecule, traces of Sb(III) may be present, also probably complexed. Due to the fact that Sb(III) is considered more toxic than Sb(V), it is important to evaluate the Sb(III) concentration in the drug samples. In the literature, very different concentrations for residual concentrations of Sb(III) in the drug ampoules are found. Therefore, to have a true insight of antimony speciation, two independent analytical methods were developed in this work. We used an anion exchange method coupled with inductively coupled plasma mass spectrometry (ICP-MS) which was cross-referenced with an electrochemistry method (differential pulse polarography (DPP)) that could be used for routine analysis on the production site. To obtain Sb species in detectable forms, the complexes between Sb species and NMG need to be broken. This was obtained by diluting samples in hydrochloric acid in deaerated conditions to avoid Sb redox reactions. For the two analytical methods, the HCl concentration was optimized to obtain simultaneously a complete destruction of the complexes as well as limited redox reactions for Sb(V) and Sb(III) released species. For high-performance liquid chromatography (HPLC)-ICP-MS, a dilution with 5?M HCl gives the better results. The side reaction is an oxidation of Sb(III) which can be limited by the removal of oxygen. When DPP is used, the major problem is the reduction of Sb(V) which is present in high amount in the samples. Working with 0.6?M HCl allows this problem to be minimized. When applied to different lots of Glucantime?, Sb(III) concentration values are in good agreement for the two analytical methods, with, for HPLC-ICP-MS, the advantage of the simultaneous detection of both Sb redox species.  相似文献   

10.
The adsorption behaviours of trivalent and pentavalent antimony on zirconium phosphate from hydrochloric acid solution and hydrochloric acid alcoholic solutions were investigated. The substitution of increasing amounts of water by alcohols was found to decrease the uptake of Sb (III) and increase that of Sb (V). Results were discussed and column separations of the two oxidation states were carried out.  相似文献   

11.
The selective retention of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a column of Chromosorb 102 resin from a buffered sample solution including Sb(V) was used for the determination of Sb(III). The retained antimony was eluted with acetone. The retention of the Sb(III)-iodide compounds with sodium iodide on the Chromosorb 102 resin column from the same solution after reducing Sb(V) to Sb(III) by iodide in acidic solution was used to preconcentrate the total antimony. The retained antimony was eluted with 0.25 mol l(-1) HNO3. The antimony in the effluent was determined by flame atomic-absorption spectrometry. Also, the total antimony was determined directly by graphite-furnace atomic absorption spectrometry. The Sb(V) concentration could be calculated by the difference. The recoveries were > or = 95%. The detection limits of a combination of the column procedure and flame AAS for antimony were 6 - 61 microg l(-1) and comparable to 4 microg l(-1) for a direct GFAAS measurement. The relative standard deviations were <6%. The procedure was applied to the determination of Sb(III) and Sb(V) in spiked tap water, waste-water samples and a certified copper metal with the satisfactory results.  相似文献   

12.
This paper describes a procedure for the speciation of antimony by UV-vis spectroscopy using pyrogallol as complexing agent. A partial least squares (PLS) regression was performed to resolve highly overlapping spectrophotometric signals obtained from mixtures of Sb(III) and Sb(V). The relative error in absolute value was less than 5% when concentrations of several mixtures were calculated. The minimum concentration determined was 3.96 × 10−5 mol dm−3 and 3.98 × 10−5 mol dm−3 for Sb(V) and Sb(III), respectively. The analysis of the possible effect of the presence of foreign ions in the solution was performed and the procedure was successfully applied to the speciation of antimony in pharmaceutical preparations and aqueous samples.  相似文献   

13.
Antimony is a common contaminant at abandoned sites for non-ferrous ore mining and processing. Because of the possible risk of antimony by transfer to plants growing on contaminated sites, it is of importance to analyze antimony and its species in such biota. A method based on high performance liquid chromatographic separation and inductively coupled plasma mass spectrometric detection (HPLC-ICP-MS) was developed to determine inorganic antimony species such as Sb(III) and Sb(V) as well as possible antimony-organic metabolisation products of the antimony transferred into plant material within one chromatographic run. The separation is performed using anion chromatography on a strong anion exchange column (IonPac AS15/AG 15). Based on isocratic optimizations for the separation of Sb(III) and Sb(V) as well as Sb(V) and trimenthylated Sb(V) (TMSb(V)), a chromatographic method with an eluent gradient was developed. The suggested analytical method was applied to aqueous extracts of Chinese break fern Pteris vittata samples. The transfer of antimony from spiked soil composites into the fern, which is known as a hyperaccumulator for arsenic, was investigated under greenhouse conditions. Remarkable amounts of antimony were transferred into roots and leaves of P. vittata growing on spiked soil composites. Generally, P. vittata accumulates not only arsenic (as shown in a multiplicity of studies in the last decade), but also antimony to a lower extent. The main contaminant in the extracts was Sb(V), but also elevated concentrations of Sb(III) and TMSb(V) (all in μg L−1 range). An unidentified Sb compound in the plant extracts was detected, which slightly differ in elution time from TMSb(V).  相似文献   

14.
A novel absorbent was prepared by dimercaptosuccinic acid chemically modifying mesoporous titanium dioxide and was employed as the micro-column packing material for simultaneous separation/preconcentration of inorganic arsenic and antimony species. It was found that both trivalent and pentavalent of inorganic As and Sb species could be adsorbed quantitatively on dimercaptosuccinic acid modified TiO2 within a pH range of 4–7, and only As(III) and Sb(III) could be quantitatively retained on the micro-column within a pH range of 10–11 while As(V) and Sb(V) were passed through the micro-column without the retention. Based on this fact, a new method of flow injection on-line micro-column separation/preconcentration coupled to inductively coupled plasma optical emission spectrometry was developed for simultaneous speciation of trace inorganic arsenic and antimony in natural waters. Under the optimized conditions, an enrichment factor of 10 and sampling frequency of 10 h− 1 were obtained with on-line mode. The detection limits of As(III), As(V), Sb(III), and Sb(V) are 0.53, 0.49, 0.77 and 0.71 ng mL− 1 for on-line mode and as low as 0.11, 0.10, 0.15 and 0.13 ng mL− 1 for off-line mode due to its higher enrichment factor (50), respectively. The relative standard deviations of two modes are less than 6.7% (C = 20 ng mL− 1, n = 7). The concentration ratio of lower oxidation states/higher oxidation states changing from 1:10 to 10:1 has no obvious effect on the recoveries of As(III) and Sb(III). In order to validate the developed method, two certified reference materials of GSBZ5004-88 and GBW(E)080545 water sample were analyzed and the determined values are in good agreement with the certified values. The proposed method was successfully applied to the simultaneous speciation of inorganic arsenic and antimony in natural waters.  相似文献   

15.
Selective sorption of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a microcolumn packed with C16-bonded silica gel phase was used for the determination of Sb(III) and of total inorganic antimony after reducing Sb(V) to Sb(III) by l-cysteine. A flow injection system composed of a microcolumn connected to the tip of the autosampler was used for preconcentration. The sorbed antimony was directly eluted with ethanol into the graphite furnace and determined by AAS. The detection limit for antimony was significantly lowered to 0.007 μg l−1 in comparison to 1.7 μg l−1 for direct injection GFAAS. This procedure was applied for speciation determinations of inorganic antimony in tap water, snow and urine samples. For the investigation of long-term stability of antimony species a flow injection hydride generation atomic absorption spectrometry with quartz tube atomization (FI HG QT AAS) and GFAAS were used for selective determination of Sb(III) in the presence of Sb(V) and total content of antimony, respectively. Investigations on the stability of antimony in several natural samples spiked with Sb(III) and Sb(V) indicated instability of Sb(III) in tap water and satisfactory stability of inorganic Sb species in the presence of urine matrix.  相似文献   

16.
In the present paper, we develop a methodology for antimony speciation in occupationally exposed human urine samples by high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS). The methodology was applied to the determination of Sb(V), Sb(III) and (CH3)3SbCl2 (TMSb(V)). Retention time of Sb(V), Sb(III) and TMSb(V) species were 0.88, 2.00 and 3.61 and the detection limits were 0.18, 0.19 and 0.12 μg L− 1, for 100 μL loop injection respectively which is considered useful for elevated/occupationally exposed urine samples. Studies on the stability of antimony species in urine samples on the function of the elapsed time of preservation (4 °C) and storage (− 70 °C) were performed. Results revealed that antimony species are highly unstable at − 70 °C, probably due to co-precipitation reaction. In this kind of matrix transformation during preservation time may occur, such as oxidation of Sb(III) to Sb(V) and transformation into species that do not elute from the column. EDTA shows that it is able to stabilize Sb(III) for more than one week of preservation time at 4 °C avoiding co-precipitation during storage at − 70 °C. Finally the methodology was applied to occupationally exposed human urine samples. 25% of specimens present antimony levels (Sb(V)) of more than 5 μg L− 1.  相似文献   

17.
 An on-line method for the separation and analysis of Sb(V) and Me3Sb in the presence of Sb(III) in liquid samples is described. Inorganic and organic antimony species were separated using anion-exchange high-performance liquid chromatography (HPLC) coupled with hydride generation-atomic fluorescence detection (HG-AFS). Optimum conditions for the separation of antimony species by HPLC and the hydride generation conditions for the determination by HG-AFS were established. Matrix interference of the chromatographic determination was studied in relation to MgSO4 and NaCl. The method developed was applied to the separation and determination of antimony species in spiked and natural water samples. The suitability of the method for analysis in microbial growth media and physiological studies involving methylantimony species is discussed. Received December 11, 2000. Revision April 26, 2001.  相似文献   

18.
For the determination of antimony by hydride generation techniques a pretreatment procedure has been developed for the reduction of Sb(V) to Sb(III) in order to remove the effect of hydrofluoric acid which strongly interferes with the reduction of pentavalent antimony to the trivalent state. It is based on the combined action of l-cysteine and boric acid at 80 degrees C. The pretreatment is effective in both nitric and hydrochloric acid media. Quantitative recoveries are obtained in less than 60 min. Under these conditions antimony is reduced to the trivalent state in acid media containing both nitric and hydrochloric acid. The method has been applied to the determination of total antimony in certified reference materials of sediments after pressurized microwave digestion with HNO(3)-HCl-HF. Good agreement is obtained by using both analytical techniques: continuous flow hydride generation atomic fluorescence spectrometry and flow injection electrothermal atomic absorption spectrometry with in-situ trapping of stibine in a graphite atomizer.  相似文献   

19.
The speciation of inorganic Sb(III) and Sb(V) ions in aqueous solution was studied. The adsorption behavior of Sb(III) and Sb(V) ions were investigated as iodo and ammonium pyrollidine dithiocarbamate (APDC) complexes on a column filled with Amberlite XAD-8 resin. Sb(III) and Sb(V) ions were recovered quantitatively and simultaneously from a solution containing 0.8 M NaI and 0.2 M H2SO4 by the XAD-8 column. Sb(III) ions were also adsorbed quantitatively as an APDC complex, but the recovery of the Sb(V)-APDC complex was found to be <10% at pH 5. According to these data, the concentrations of total antimony as Sb(III)+Sb(V) ions and Sb(III) ion were determined with XAD-8/NaI+H2SO4 and XAD-8/APDC systems, respectively. The Sb(V) ion concentration was calculated by subtracting the Sb(III) concentration found with XAD-8/APDC system from the total antimony concentration found with XAD-8/NaI+H2SO4 system. The developed method was applied to determine Sb(III) and Sb(V) ions in samples of artificial seawater and wastewater.  相似文献   

20.
In this work, the applicability of mean centering (MC) of ratio kinetic profiles method to the kinetic voltammetry data is verified. For this purpose, a procedure is described for the determination of Sb(III) and Sb(V) by adsorptive linear sweep voltammetry using pyrogallol (py) as a complexing agent. The method is based on the differences between the rate of complexation of pyrogallol with Sb(V) and Sb(III) at pH 1.2. The results show that the mean centering of ratio kinetic profiles method is suitable for the speciation of antimony. Sb(III) and Sb(V) can be determined in the ranges of 3.0-120.0 and 10.0-240.0 ng mL−1, respectively. Moreover, the solution is analyzed for any possible effects of foreign ions. The obtained results show that the method of MC in combination to electroanalytical techniques is a powerful method with high sensitivity and selectivity. The procedure is successfully applied to the speciation of antimony in pharmaceutical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号