首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Chen C  Wang R  Guo L  Fu N  Dong H  Yuan Y 《Organic letters》2011,13(5):1162-1165
A novel squaraine-based chemosensor SQ-1 has been synthesized, and its sensing behavior toward various metal ions was investigated by UV-vis and fluorescence spectroscopies. In AcOH-H(2)O (40:60, v/v) solution, Hg(2+) ions coordinate with SQ-1 causing a deaggregation which induces a visual color and absorption spectral changes as well as strong fluorescence. In contrast, the addition of other metals (e.g., Pb(2+), Cd(2+), Cu(2+), Zn(2+), Al(3+), Ni(2+), Co(2+), Fe(3+), Ca(2+), K(+), Mg(2+), Na(+), and Ag(+)) does not induce these changes at all. Thus SQ-1 is a specific Hg(2+) sensing agent due to the inducing deaggregation of the dye molecule by Hg(2+).  相似文献   

2.
Two tris(2-aminoethyl)amine (tren) based tripodal amide fluoroionophores, 1 and 2, functionalized with quinoline (chelating fluorophore) and naphthalene (non-chelating fluorophore) respectively, are synthesized in good yields. Fluoroionophore 1 shows a selective UV-Vis spectral shift in the case of Hg(2+) in acetonitrile among different metal ions like Li(+), Na(+), Ca(2+), Mg(2+), Cr(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Ag(+). On the other hand, fluoroionophore 2 shows no selectivity towards any of the above metal ions in the UV-Vis study. Furthermore, 1 shows a selective chelation induced fluorescence enhancement in the presence of Hg(2+) whereas 2 shows the enhancement of fluorescence with most of the metal ions via a photoinduced charge transfer mechanism. The naked eye detection of Hg(2+) in an acetonitrile solution of 1 shows a greenish fluorescence upon UV light irradiation. The isolated Hg(2+) complex of 1, 3, shows a similar UV-Vis and fluorescence spectral output as observed from in situ spectroscopic studies of 1 in the presence of Hg(2+). Infra-red (IR) and (1)H- NMR studies also reveal the interaction of Hg(2+) with the quinoline nitrogen atoms as well as with the amide functionality.  相似文献   

3.
This paper reports the use of fluorescent gold nanoclusters synthesized using bovine serum albumin (Au-BSA) for the sensing of copper ions in live cells. The fluorescence of the clusters was found to be quenched by Cu(2+) enabling its detection in cells. The selectivity of the nanosensor was demonstrated in the presence of several cations excluding Hg(2+). We did not study the effect of Hg(2+) since it was reported earlier. The present study suggests that Cu(2+) induced fluorescence quenching is due to its binding to BSA rather than the fluorescence quenching by metal-metal interaction as in the case of Hg(2+). The Au-BSA showed excellent selectivity to Cu(2+) at various pH conditions. The 'turn off' of fluorescence can be retrieved by a Cu(2+) chelator glycine. Our results showed that gold clusters can be used as a 'turn off' sensor for copper and a 'turn on' sensor for glycine. Under the experimental conditions, the probe showed a response for Cu(2+) over a range of 100 μM to 5 mM with a detection limit of 50 μM. The role of Cu(2+) in the misfolding and disassembly of Prion Protein (PrP) leading to various maladies is well ascertained. The methodology we reported here seems to be useful in supplementing other techniques in predicting disease conditions involving Cu(2+).  相似文献   

4.
Some novel imidazole derivatives were developed as highly sensitive chemisensors for transition metal ions. A prominent fluorescence enhancement was found in the presence of transition metal ions such as Hg(2+), Pb(2+), Cu(2+), Zn(2+), Co(2+) and Fe(2+) and this was suggested to result from the suppression of radiationless transitions from the n-π* state in the chemisensors. By DFT calculation HOMO-LUMO energies were calculated, the electric dipole moment (μ) and the hyperpolarizability (β) of the investigated molecules have been studied experimentally and also theoretically. These synthesized molecules were found to have microscopic non-linear optical (NLO) behaviour with non-zero tensor components.  相似文献   

5.
Kaur P  Sareen D  Singh K 《Talanta》2011,83(5):1695-1700
Although the high sensitivity, high selectivity and fast response make emission (fluorescence) based technique as one of the most promising tool for developing the chemosensors for metal ions, the past few years have witnessed a demand for the absorption based chemosensors for paramagnetic heavy metal ions, especially Cu(2+). Being paramagnetic, Cu(2+) leads to the low signal outputs ("turn-off") caused by decreased emission which may sometimes give false positive response, rendering the emission based technique less reliable for analytical purposes. Herein, we report synthesis and characterization of a hetarylazo derivative, characterized by a strong charge-transfer band which gets attenuated convincingly in the presence of Cu(2+) leading to distinct naked-eye color change (yellow to purple), and to a lesser extent in the presence of Cd(2+), Zn(2+), Co(2+), Pb(2+), Fe(2+), Ni(2+), Fe(3+) and Hg(2+) for which the naked eye sensitivity was comparatively (w.r.t. Cu(2+)) much less. No response was observed for the other metal ions including Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+), Mn(2+), Ag(+), Zn(2+), Cd(2+), Pb(2+), and lanthanides Ce(3+), La(3+), Pr(3+), Eu(3+), Nd(3+), Lu(3+), Yb(3+), Tb(3+), Sm(3+), Gd(3+). The proposed sensing mechanism has been ascribed to the stabilization of LUMO after complexation with Cu(2+) and a 1:1 stoichiometry has been deduced.  相似文献   

6.
A new monostyryl boron dipyrromethene derivative (MS1) appended with two triazole units indicates the presence of Hg(2+) among other metal ions with high selectivity by color change and red emission. Upon Hg(2+) binding, the absorption band of MS1 is blue-shifted by 29 nm due to the inhibition of the intramolecular charge transfer from the nitrogen to the BODIPY, resulting in a color change from blue to purple. Significant fluorescence enhancement is observed with MS1 in the presence of Hg(2+); the metal ions Ag(+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(2+), Fe(3+), K(+), Mg(2+), Mn(2+), Ni(2+), Pb(2+), and Zn(2+) cause only minor changes in the fluorescence of the system. The apparent association constant (K(a)) of Hg(2+) binding in MS1 is found to be 1.864 × 10(5) M(-1). In addition, fluorescence microscopy experiments show that MS1 can be used as a fluorescent probe for detecting Hg(2+) in living cells.  相似文献   

7.
A weakly fluorescent thiosemicabazone (L(1)H) was found to be a selective optical and "turn-on" fluorescent chemodosimeter for Cu(2+) ion in aqueous medium. A significant fluorescence enhancement along with change in color was only observed for Cu(2+) ion; among the other tested metal ions (viz. Na(+), K(+), Mg(2+), Ca(2+), Cr(3+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), Ag(+), Ni(2+), Co(2+), Fe(3+) and Mn(2+)). The Cu(2+) selectivity resulted from an oxidative cyclization of the weak fluorescent L(1)H into highly fluorescent rigid 4,5-dihydro-5,5-dimethyl-4-(naphthalen-5-yl)-1,2,4-triazole-3-thione (L(2)). The signaling mechanism has been confirmed by independent synthesis with detail characterization of L(2).  相似文献   

8.
Ligand-capped gold nanoparticles were synthesized by capping monothiol derivatives of 2,2'-dipyridyl onto the surface of Au nanoparticles (Au-BT). The average size of the metal core is around 4 nm, with a shell of approximately 340 bipyridine ligands around the Au nanoparticle. The high local concentration of the chelating ligands ( approximately 5 M) around the Au nanoparticle makes these particles excellent ion sponges, and their complexation with Eu(III)/Tb(III) ions yields phosphorescent nanomaterials. Absorption spectral studies confirm a 1:3 complexation between Eu(III)/Tb(III) ions and bipyridines, functionalized on the surface of Au nanoparticles. The red-emitting Au-BT:Eu(III) complex exhibits a long lifetime of 0.36 ms with six line-like emission peaks, whereas the green-emitting Au-BT:Tb(III) complex exhibits a lifetime of 0.7 ms with four line-like emission peaks. These phosphorescent nanomaterials, designed by linking BT:Eu(III) complexes to Au nanoparticles, were further utilized as sensors for metal cations. A dramatic decrease in the luminescence was observed upon addition of alkaline earth metal ions (Ca(2+), Mg(2+)) and transition metal ions (Cu(2+), Zn(2+), Ni(2+)), resulting from an isomorphous substitution of Eu(III) ions, whereas the luminescence intensity was not influenced by the addition of Na(+) and K(+) ions. Direct interaction of bipyridine-capped Au nanoparticles with Cu(2+) ions brings the nanohybrid systems closer, leading to the formation of three-dimensional superstructures. Strong interparticle plasmon interactions were observed in these closely spaced Au nanoparticles.  相似文献   

9.
We have developed a new highly selective and sensitive technique for the detection of Hg(2+) using DNA-functionalized gold nanoparticles (Au NPs) and OliGreen. This system is the first that allows the detection of Hg(2+) based on the release of DNA molecules, induced by conformational changes on Au NP surfaces, and its sensitivity is highly dependent upon surface DNA density. When Hg(2+) ions interact with the thymidine units of the DNA molecules bound to the Au NPs through Au-S bonds, the conformations of these DNA derivatives change from linear to hairpin structures, causing the release of some of the DNA molecules from the surface of the Au NPs into the bulk solution to react with OliGreen. The fluorescence of OliGreen-DNA complexes increased with increasing concentration of Hg(2+), and Hg(2+) could be detected at concentrations as low as 25 nM. A linear correlation existed between the fluorescence intensity and the concentration of Hg(2+) over the range 0.05-2.5 microM (R(2) = 0.98). This simple and cost-effective probe was applied to determine the spiked Hg(2+) in the pond samples; the recoveries (96-102%) suggested low matrix interference and high sensitivity.  相似文献   

10.
A novel chemosensor based on unsymmetrical squaraine dye (USQ-1) for the selective detection of Hg(2+) in aqueous media is described. USQ-1 in combination with metal ions shows dual chromogenic and "turn-on" fluorogenic response selectivity toward Hg(2+) as compared to Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+), Al(3+), Cu(2+), Cd(2+), Mn(2+), Fe(3+), Ag(+), Pb(2+), Zn(2+), Ni(2+) and Co(2+) due to the Hg(2+)-induced deaggregation of the dye molecule. A recognition mechanism based on the binding mode is proposed based on the absorption and fluorescence changes, (1)H NMR titration experiments, ESI-MS study, and theoretical calculations.  相似文献   

11.
Kim S  Noh JY  Kim KY  Kim JH  Kang HK  Nam SW  Kim SH  Park S  Kim C  Kim J 《Inorganic chemistry》2012,51(6):3597-3602
In this study, an assay to quantify the presence of aluminum ions using a salicylimine-based receptor was developed utilizing turn-on fluorescence enhancement. Upon treatment with aluminum ions, the fluorescence of the sensor was enhanced at 510 nm due to formation of a 1:1 complex between the chemosensor and the aluminum ions at room temperature. As the concentration of Al(3+) was increased, the fluorescence gradually increased. Other metal ions, such as Na(+), Ag(+), K(+), Ca(2+), Mg(2+), Hg(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Pb(2+), Cr(3+), Fe(3+), and In(3+), had no such significant effect on the fluorescence. In addition, we show that the probe could be used to map intracellular Al(3+) distribution in live cells by confocal microscopy.  相似文献   

12.
Wu J  Li L  Zhu D  He P  Fang Y  Cheng G 《Analytica chimica acta》2011,694(1-2):115-119
A colorimetric nanoprobe-mercury-specific DNA-functionalized gold nanoparticles (Au-MSD) was developed for sensing Hg(2+). The new mercury-sensing concept relies on measuring changes in the inhibition of "non-crosslinking" aggregation of Au-MSD-induced by the folding of mercury-specific DNA strand through the thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination. In the absence of Hg(2+), a high concentration of MgCl(2) (50 mM) results in a rapid aggregation of Au-MSD because of the removal of charge repulsion. When Hg(2+) is present, the particles remain stable due to the folding of MSD functionalized on the particle surface. The assay enables the colorimetric detection of Hg(2+) in the concentration range of 0.1-10 μM Hg(2+) ions with a detection limit of 60 nM, and allows for the selective discrimination of Hg(2+) ions from the other competitive metal ions. Toward the goal for practical applications, the sensor was further evaluated by monitoring Hg(2+) in fish tissue samples.  相似文献   

13.
A simple and sensitive method was developed for the detection of mercury ions with quartz crystal microbalance (QCM), based on the specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) interaction and gold nanoparticle-mediated signal amplification. To enhance the sensitivity of detection a sandwich hybridization approach was adopted in this work. The QCM gold surface was modified with the probe SH-oligonucleotides (Oligo-1) and 6-Mercapto-1-hexanol to form an active surface for the hybridization of a longer ss-DNA (Oligo-2), and then Oligo-3 hybridazated with an excess and matching part of Oligo-2. In all oligonucleotides, there existed T bases. In the presence of Hg(2+) ions, special T-Hg(2+)-T reaction greatly enhanced the hybridization of oligonucleotides and detection sensitivity. The gold nanoparticle (Au NPs) amplifier method further increased the sensitivity of detection. A detection sensitivity of 5nM Hg(2+) was obtained in the QCM system, whereas other coexisting metal ions (such as Ni(2+), Mg(2+), Co(2+), Cr(3+), Pb(2+), Cd(2+), Mn(2+), Ba(2+)) had no significant interference. This method reveals a new approach for the manufacture of a kind of simple and low cost sensors for the Hg(2+) detection.  相似文献   

14.
Dansyl-anthracene dyads 1 and 2 in CH(3)CN-H(2)O (7:3) selectively recognize Cu(2+) ions amongst alkali, alkaline earth and other heavy metal ions using both absorbance and fluorescence spectroscopy. In absorbance, the addition of Cu(2+) to the solution of dyads 1 or 2 results in appearance of broad absorption band from 200 nm to 725 nm for dyad 1 and from 200 nm to 520 nm for dyad 2. This is associated with color change from colorless to blue (for 1) and fluorescent green (for 2). This bathochromic shift of the spectrum could be assigned to internal charge transfer from sulfonamide nitrogen to anthracene moiety. In fluorescence, under similar conditions dyads 1 and 2 on addition of Cu(2+) selectively quench fluorescence due to dansyl moiety between 520-570 nm (for 1)/555-650 nm (for 2) with simultaneous fluorescence enhancement at 470 nm and 505 nm for dyads 1 and 2, respectively. Hence these dyads provide opportunity for ratiometric analysis of 1-50 μM Cu(2+). The other metal ions viz. Fe(3+), Co(2+), Ni(2+), Cd(2+), Zn(2+), Hg(2+), Ag(+), Pb(2+), Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+) do not interfere in the estimation of Cu(2+) except Cr(3+) in case of dyad 1. The coordination of dimethylamino group of dansyl unit with Cu(2+) causes quenching of fluorescence due to dansyl moiety between 520-600 nm and also restricts the photoinduced electron transfer from dimethylamino to anthracene moiety to release fluorescence between 450-510 nm. This simultaneous quenching and release of fluorescence respectively due to dansyl and anthracene moieties emulates into Cu(2+) induced ratiometric change.  相似文献   

15.
Three new compounds bearing furyl, aryl, or thienyl moieties linked to an imidazo-crown ether system (1, 2, and 3) were synthesized and fully characterized by elemental analysis, infrared, UV-vis absorption, and emission spectroscopy, X-ray crystal diffraction, and MALDI-TOF-MS spectrometry. The interaction toward metal ions (Ca(2+), Cu(2+), Ni(2+), and Hg(2+)) and F(-) has been explored in solution by absorption and fluorescence spectroscopy. Mononuclear and binuclear metal complexes using Cu(2+) or Hg(2+) as metal centers have been synthesized and characterized. Compounds 2 and 3 show a noticeable enhancement of the fluorescence intensity in the presence of Ca(2+) and Cu(2+) ions. Moreover compound 3 presents a dual sensory detection way by modification of the fluorimetric and colorimetric properties in the presence of Cu(2+) or Hg(2+). EPR studies in frozen solution and in microcrystalline state of the dinuclear Cu(II)3 complex revealed the presence of an unique Cu(2+) type.  相似文献   

16.
Zhang JR  Huang WT  Xie WY  Wen T  Luo HQ  Li NB 《The Analyst》2012,137(14):3300-3305
Coupling T base with Hg(2+) to form stable T-Hg(2+)-T complexes represents a new direction in detection of Hg(2+). Here a graphene oxide (GO)-based fluorescence Hg(2+) analysis using DNA duplexes of poly(dT) that allows rapid, sensitive, and selective detection is first reported. The Hg(2+)-induced T(15)-(Hg(2+))(n)-T(15) duplexes make T(15) unable to hybridize with its complementary A(15) labelled with 6'-carboxyfluorescein (FAM-A(15)), which has low fluorescence in the presence of GO. On the contrary, when T(15) hybridizes with FAM-A(15) to form double-stranded DNA because of the absence of Hg(2+), the fluorescence largely remains in the presence of GO. A linear range from 10 nM to 2.0 μM (R(2) = 0.9963) and a detection limit of 0.5 nM for Hg(2+) were obtained under optimal experimental conditions. Other metal ions, such as Al(3+), Ag(+), Ca(2+), Ba(2+), Mg(2+), Zn(2+), Mn(2+), Co(2+), Pb(2+), Ni(2+), Cu(2+), Cd(2+), Cr(3+), Fe(2+), and Fe(3+), had no significant effect on Hg(2+) detection. Moreover, the sensing system was used for the determination of Hg(2+) in river water samples with satisfactory results.  相似文献   

17.
Contamination of the environment with heavy metal ions has been an important concern throughout the world for decades. Driven by the need to detect trace amounts of mercury in environmental samples, this article demonstrates for the first time that nonlinear optical (NLO) properties of MPA-HCys-PDCA-modified gold nanoparticles can be used for rapid, easy and reliable screening of Hg(II) ions in aqueous solution, with high sensitivity (5 ppb) and selectivity over competing analytes. The hyper Rayleigh scattering (HRS) intensity increases 10 times after the addition of 20 ppm Hg(2+) ions to modified gold nanoparticle solution. The mechanism for HRS intensity change has been discussed in detail using particle size-dependent NLO properties as well as a two-state model. Our results show that the HRS assay for monitoring Hg(II) ions using MPA-HCys-PDCA-modified gold nanoparticles has excellent selectivity over alkali, alkaline earth (Li(+), Na(+), K(+), Mg(2+), Ca(2+)), and transition heavy metal ions (Pb(2+), Pb(+), Mn(2+), Fe(2+), Cu(2+), Ni(2+), Zn(2+), Cd(2+)).  相似文献   

18.
Lee YF  Deng TW  Chiu WJ  Wei TY  Roy P  Huang CC 《The Analyst》2012,137(8):1800-1806
We have developed a simple, low-cost, paper-based probe for the selective colorimetric detection of copper ions (Cu(2+)) in aqueous solutions. The bovine serum albumin (BSA)-modified 13.3-nm Au nanoparticle (BSA-Au NP) probe was designed to detect Cu(2+) ions using lead ions (Pb(2+)) and 2-mercaptoethanol (2-ME) as leaching agents in a glycine-NaOH (pH 12.0) solution. In addition, a nitrocellulose membrane (NCM) was used to trap the BSA-Au NPs, leading to the preparation of a nanocomposite film consisting of a BSA-Au NP-decorated membrane (BSA-Au NPs/NCM). The BSA-Au NPs probe operates on the principle that Cu deposition on the surface of the BSA-Au NPs inhibits their leaching ability, which is accelerated by Pb(2+) ions in the presence of 2-ME. Under optimal solution conditions (5 mM glycine-NaOH (pH 12.0), Pb(2+) (50 μM), and 2-ME (1.0 M)), the Pb(2+)/2-ME-BSA-Au NPs/NCM enabled the detection of Cu(2+) at nanomolar concentrations in aqueous solutions by the naked eye with high selectivity (at least 100-fold over other metal ions). In addition, this cost-effective probe allowed for the rapid and simple determination of Cu(2+) ions in not only natural water samples but also in a complex biological sample (in this case, blood sample).  相似文献   

19.
Tan J  Yan XP 《Talanta》2008,76(1):9-14
We report a simple twisted intramolecular charge transfer (TICT) chromogenic chemosensor for rapid and selective detection of Hg(2+) and Cu(2+). The sensor was composed of an electron-acceptor 4-fluoro moiety and an electron-donor 7-mercapto-2,1,3-benzoxadiazole species where the S together with the 1-N provided the soft binding unit. Upon Hg(2+) and Cu(2+) complexation, remarkable but different absorbance spectra shifts were obtained in CH(3)CN-H(2)O mixed buffer solution at pH 7.6, which can be easily used for naked-eye detection. The sensor formed a stable 2:1 complex with Cu(2+), and both 2:1 and 3:1 complexes with Hg(2+). While alkali-, alkaline earth- and other heavy and transition metal ions such as Na(+), Mg(2+), Mn(2+), Co(2+), Ni(2+), Ag(+), Zn(2+), Pb(2+) and Cd(2+) did not cause any significant spectral changes of the sensor. This finding is not only a supplement to the detecting methods for Hg(2+) and Cu(2+), but also adds new merits to the chemistry of 4,7-substituted 2,1,3-benzoxadiazoles.  相似文献   

20.
The structurally characterized lower rim 1,3-di{4-antipyrine}amide conjugate of calix[4]arene (L) exhibits high selectivity toward Hg(2+) among other biologically important metal ions, viz., Na(+), K(+), Ca(2+), Mg(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Ag(+) as studied by fluorescence, absorption, and ESI MS. L acts as a sensor for Hg(2+) by switch-off fluorescence and exhibits a lowest detectable concentration of 1.87 ± 0.1 ppm. The complex formed between L and Hg(2+) is found to be 1:1 on the basis of absorption and fluorescence titrations and was confirmed by ESI MS. The coordination features of the mercury complex of L were derived on the basis of DFT computations and found that the Hg(2+) is bound through an N(2)O(2) extending from both the arms to result in a distorted octahedral geometry with two vacant sites. The nanostructural features such as shape and size obtained using AFM and TEM distinguishes L from its Hg(2+) complex and were different from those of the simple mercuric perchlorate. L is also suited to sense pyrimidine bases by fluorescence quenching with a minimum detection limit of 1.15 ± 0.1 ppm in the case of cytosine. The nature of interaction of pyrimidine bases with L has been further studied by DFT computational calculations and found to have interactions through a hydrogen bonding and NH-π interaction between the host and the guest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号