首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
传统弓形折流板换热器壳程流体横向流动时存在流动阻力和传热死区大等缺点。为克服上述不足,研究开发了一种新型高效节能的斜向流管壳式换热器,采用导向型折流栅替代传统弓形折流板,倾斜流道内流体斜向冲刷换热管束。考察和对比了斜向流换热器和弓形折流板换热器壳程主流区的流体流速分布和变化规律,证实了导向型折流栅具有显著的控涡均化壳程流场和提高壳程流体整体流速的作用,有助于减小壳程压降,增大有效换热面积,为管壳式换热器结构改良提供了参考依据。  相似文献   

2.
Enhancement of heat transfer in a heat exchanger via a DC corona discharge was studied experimentally using a single-tube shell-and-tube heat exchanger. Air was the working fluid in both the tube and shell sides. Excitation of the tube side was via a single wire electrode, while that of the shell side was via four rod electrodes oriented symmetrically at 90° intervals. Three series of experiments were performed: (1) excitation of the tube side only, (2) excitation of the shell side only, and (3) simultaneous excitation of the tube and shell sides. Both heat transfer and pressure drop measurements were performed, with Reynolds number and electric field potential as parametric quantities in the tube and shell sides. It was found that highest enhancements take place when the tube and shell sides are excited simultaneously, yielding a 322% increase in the overall heat transfer coefficient. Study of the heat transfer enhancements per unit pumping power indicates that for the range of parameters studied, the technique is most efficient at moderate Reynolds numbers and at electrode potentials in the midrange between threshold and sparkover limits.  相似文献   

3.
对倾斜角为20°、24°、28°和32°的单头以及32°的双头周向重叠三分螺旋折流板换热器和弓形折流板换热器的传热和压降性能进行了测试,换热器采用公共壳体和可更换管芯结构。采用壳侧轴向雷诺数和轴向欧拉数分别作为反映壳侧流量和阻力系数的无因次参数。试验结果显示在试验范围内周向重叠三分螺旋折流板换热器壳侧换热系数、壳侧压降和综合性能指标都随着倾斜角增大而减小;倾斜角20°方案的性能指标最佳,其平均壳侧努塞尔数和轴向欧拉数与弓形折流板方案的数值之比分别为1.123和0.45;双头螺旋折流板方案的换热系数和压降都大于同样倾斜角的单头螺旋折流板方案,但两者的综合性能较接近。  相似文献   

4.
本文对自制微管换热器的流动与传热性能进行了实验研究。提出了微细圆管换热器管内单相强制对流换热努摩尔数准则式,并与已有相关文献提出的关联式做了对比,结果表明:微管管内换热系数比常规尺度计算公式预测值要高,同时本文分析了微细管内的压力降、摩擦阻力系数f随雷诺数的关系。研究表明微管管内压降、摩擦系数都比常规尺度预测值要高。  相似文献   

5.
螺旋折流片换热器壳侧传热与流动的数值模拟   总被引:9,自引:1,他引:8  
提出了一种强化管壳式换热器壳侧传热的螺旋折流片式换热器新方案,该方案在部分管子上套上螺旋折流片,不仅强化传热,而且对相邻管子形成支撑;利用FLUENT流体计算软件对同心套管螺旋折流片式换热段的壳侧流场、温度场进行了数值模拟,并讨论了螺旋角对其强化传热和阻力性能的影响。结果显示螺旋折流片诱导的涡旋流动对于减薄边界层,促进近壁流体与主流区流体的动量和质量交换进而强化传热有明显的作用,传热系数可比光管提高约40%-100%,但其流动阻力也将增大。  相似文献   

6.
The numerical modeling of natural convection fluid flow and heat transfer in a quarter of gearwheel-shaped heat exchanger is carried out. The heat exchanger is included with internal active square bodies. These bodies have hot and cold temperatures with different thermal arrangements. Three different thermal arrangements are considered and showed with Case A, Case B and Case C. The CuO-water nanofluid is selected as operating fluid. The Koo-Kleinstreuer-Li (KKL) correlation is utilized to estimate the dynamic viscosity and thermal conductivity. In addition, the shapes of nanoparticles are taken account in the analysis. The Rayleigh number, nanoparticle concentration and thermal arrangements of internal active bodies are the governing parameters. The impacts of these parameters on the fluid flow, heat transfer rate, local and total entropy generation and heatlines are studied, comprehensively. The results show that the heat transfer rate enhances with increasing of Rayleigh number and nanoparticle concentration. Moreover, the thermal arrangement of internal active bodies has considerable effect on the heat transfer between heat sources and heat sinks. On the other hand, the total entropy generation enhances and decreases with increasing of Rayleigh number and nanoparticle concentration, respectively.  相似文献   

7.
对油基钻屑在螺纹推进式换热器内的流动换热过程进行了数值模拟,研究了螺杆转速、油基钻屑雷诺数Re和螺纹截面形状对流动换热的影响。结果表明:随着螺杆转速增加,传热系数、油基钻屑出口温度均增大;同时发现,当雷诺数Re<250时,壳侧Nusselt数随雷诺数Re增大而迅速增大,此后雷诺数对Nusselt数影响较小;Nusselt数随曲率比di/D增大而增大。为方便工程设计,利用数值结果给出了油基钻屑的流动换热关系式。  相似文献   

8.
Forced convection heat transfer from a helically coiled heat exchanger embedded in a packed bed of spherical glass particles was investigated experimentally. With dry air at ambient pressure and temperature as a flowing fluid, the effect of particle size, helically coiled heat exchanger diameter, and position was studied for a wide range of Reynolds numbers. It was found that the particle diameter, the helically coiled heat exchanger diameter and position, and the air velocity are of great influence on the convective heat transfer between the helically coiled heat exchanger and air. Results indicated that the heat transfer coefficient increased with increasing the air velocity, increasing helically coiled heat exchanger diameter, and decreasing the particle size. The highest heat transfer coefficients were obtained with the packed-bed particle size of 16 mm and heat exchanger coil diameter of 9.525 mm (1/4 inch) at a Reynolds number range of 1,536 to 4,134 for all used coil positions in the conducted tests. A dimensionless correlation was proposed for Nusselt number as a function of Reynolds number, particle size, coil size, and coil position.  相似文献   

9.
建立了三分螺旋折流板换热器壳侧流动与传热的数学模型,对其流场、温度场和压力场的数值模拟结果在多个纵剖面和横切片上进行了展示。可见在螺旋通道的轴心和靠近壳体的折流板外缘区域局部速度较高,在折流板背流面呈现出有利于强化掺混作用的回流区,流道内几乎没有流动死区;壳侧流体温度为稳步均匀下降趋势,并呈现从圆周的外缘向轴心方向逐渐递减;而压力场则呈现明显的周期性和阶梯性。  相似文献   

10.
弓形折流板换热器中折流板对换热器性能的影响   总被引:2,自引:0,他引:2  
本文采用Bell-Delaware换热器设计方法研究了传统弓形折流板换热器加热轻油时在不同管束排列角度下,改变换热器壳侧折流板间距以及改变折流板的窗口高度对管壳式换热器的壳体内径、换热管数目、壳侧换热系数及壳侧压降的影响.  相似文献   

11.
This paper presents an experimental study of waste heat recovery shell-and-tube heat exchangers. The exchanger heat duty, overall heat transfer coefficient, effectiveness and tubeside friction factor are investigated as functions of the tube surface geometry (plain or dimpled), the flow type (counter or parallel), the tube Reynolds number and the shellside heat capacity rate. Water and the exhaust gases of a Diesel engine are passed inside the tube and the shell, respectively.The heat transfer characteristics increase with an increase in tube Reynolds number and the shellside heat capacity rate, for all the flow types and the surface geometries examined. The counter-flow, shell-and-dimpled-tube heat exchanger, compared with that exchanger having a plain tube, increases the heat duty and the overall heat transfer coefficient by 80%, and the heat exchanger -effectiveness increases by 35%. For the parallel-flow, shell-and-dimpled-tube heat exchanger, the heat duty, the overall heat transfer coefficient and the effectiveness increase by 30, 55, and 25%, respectively. At the same time the dimpled tube increases the tubeside friction factor by 600% over that of the plain tube. The rate of waste heat recovered from the exhaust gases of the Diesel engine by the counter-flow, shell-and-dimpled-tube heat exchanger is equal to 10% of the maximum brake power of the engine running at 1500 rpm, and the tube Reynolds number equal to 8875.  相似文献   

12.
In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed-bed reactor with a novel configuration for propylene-to-acrolein oxidation reaction is presented using a three-dimensional computational fluid dynamics method (CFD) to ensure the uniformity condition using molten salt as a heat carrier medium on shell side. The effects of multiscale structural parameters including the number of baffles, baffles cut, central nontube region and the number of flow channels on pressure drop and heat transfer are considered. The simulations suggest that heat transfer coefficient per pressure drop is reduced with increasing number of baffles. By the single factor sensitivity analysis it was shown that the central region is the key factor in the structural design of a multi-tubular fixed-bed reactor.  相似文献   

13.
The use of air bubbles as a heat transfer improvement technique for heat exchangers has been proposed by some researchers. The vertical motion of tiny bubbles because of density difference with liquid provides extra vibration, eddies, turbulences, and consequently further heat transfer rate. The variety of affected parameters, such as injection method, air mass flow rate, bubbles size, number of perforations that forms bubbles, etc., has added to the complexity of this phenomena so that any change in the said parameters significantly influences the thermal-exergetic behavior of the heat exchanger. The quality and quantity of the impact of bubbles on the thermal performance of heat exchangers are different for any type of them. Moreover, each type of heat exchanger requires a specific injection method depending on the heat exchanger structure. In the present research, an injection way is proposed for vertical double-tube heat exchangers, and the effect of bubbles on thermal-exergetic characteristics is experimentally studied and discussed, which have not been performed before. Nondimensional exergy destruction, number of heat transfer units, and effectiveness are the main evaluated parameters in the present paper. Results showed a significant thermal improvement of the heat exchanger under the bubble injection.  相似文献   

14.
简述了列管式换热器强化传热技术的进展及发展方向,管程强化传热采用螺纹管、横纹管、波纹管、缩放管、管内插入物、三维内肋管、翘片管等传热元件,壳程强化传热采用板式支撑、折流插式支撑、空心环支撑、管子自支撑等管束支撑结构。指出了列管式换热器研究中存在的不足。指出了今后的发展方向,为列管式换热器的研究和应用提供理论参考。  相似文献   

15.
The lattice Boltzmann simulation of nanofluid flow and heat transfer during natural convection within a dumbbell-shaped heat exchanger is carried out. The heat exchanger is filled with CuO–water. The KKL model is employed to predict the thermo-physical properties of nanofluid. In order to perform a comprehensive hydrothermal investigation, different post-processing approaches such as heatline visualization, total entropy generation, local entropy generation based on local fluid friction irreversibility and heat transfer irreversibility, average and local Nusselt variation are employed. In the present investigation, it is tried to present the impact of different influential parameters like Rayleigh number, solid volume fraction of nanofluid and thermal arrangement of internal fins-bodies on the fluid flow, heat transfer rate and entropy generation.  相似文献   

16.
翅片管束式管壳式换热器三维数值模拟研究   总被引:3,自引:1,他引:2  
本文提出了运用多孔介质模型、分布阻力模型和k-ε湍流模型对壳侧为翅片管束的壳管式换热器壳侧速度场与温度场进行三维数值模拟的方法,并对一相应类型换热器壳侧的流动与换热进行了数值模拟,得出了壳侧流场参数的图示以及壳侧进出口压降,温差,换热量随壳侧Re变化的特性曲线。  相似文献   

17.
Experiments have been conducted, and correlations are developed for the pressure drop and heat transfer coefficient for the tube and shell sides of a helical coil heat exchanger. In the tube side, the laminar friction factor and Nusselt numbers are represented as functions of Red/D, whereas in turbulent flow the results are correlated with Re·(d/D)2. The pressure drop and heat transfer values for the shell side are found to follow the classical Blasius and Dittus-Boelter type relations, while a strong dependence on the coil to tube diameter ratio is detected. The performance of the exchanger has been tested not only as simulated experimental exchanger but also as a waste heat recovery device for a 60 HP gas turbine. Excellent corroboration of the effectiveness-NTU relation has been observed between the simulation and in situ experiments.  相似文献   

18.
采用数值模拟的方法,研究了流道内上下两肋片均布置有涡产生器的扁管管片式散热板芯的传热与阻力特性,并与流道单面布置涡产生器的换热板芯进行了对比.结果表明,采用双面带涡产生器的肋片表面能在提高Nu的同时,降低流动阻力,换热性能得到了明显的提高,在Re=1500时,平均Nu数提高了8.6%,横向平均Nu最大提高了30%,阻力下降了6.5%.  相似文献   

19.
在空冷系统中,换热器空气侧的表面结霜问题是影响其应用和发展的主要问题。通过对结霜条件下翅片管换热器空气侧换热性能的实验研究,得出了空气湿度、翅片间距、风速等参数变化对空气侧当量表面传热系数的影响;结果表明在一定的范围内,结霜前期h0值随结霜时间τ急剧下降,在结霜后期,这些参数对h0值的影响大为削弱。  相似文献   

20.
The waste heat recovery unit is one of the most important units in the chemical process. It recovers waste heat from the exhaust gas of the process resulting in the reduction of heat loss. In the detergent manufacturing process, the particulate air leaving the spray dryer is the exhaust gas containing the large amount of heat. Therefore, a waste heat recovery unit can significantly reduce heat loss. In this work, heat transfer coefficients of a waste heat recovery unit in the detergent manufacturing process were studied. Waste heat from the particulate air is recovered in the shell and coiled tube heat exchanger. The particulate air flows in the shell side, and water flows in the tube side. Four coiled tubes with different coil pitches were investigated. The results show that the tube-side heat transfer coefficient increases as the coil pitch decreases. Loading ratio also has an important effect on heat transfer coefficients. The increase of loading ratio leads to a lower value of the overall heat transfer coefficient. From 100 experiments, empirical correlations for the prediction of tube-side and shell-side heat transfer coefficients were proposed. The results indicate that the predicted heat transfer coefficients agree well with the experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号