首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present an asymptotic analysis of the three-dimensional problem for a thin linearly elastic cantilever =×(0,l) with rectangular cross-section of sides and 2, as goes to zero. Under suitable assumptions on the given loads, we show that the three-dimensional problem converges in a variational sense to the classical one-dimensional model for extension, flexure and torsion of thin-walled beams. Mathematics Subject Classifications (2000) 474K20, 74B10, 49J45.  相似文献   

2.
The equilibrium states of homogeneous turbulence simultaneously subjected to a mean velocity gradient and a rotation are examined by using asymptotic analysis. The present work is concerned with the asymptotic behavior of quantities such as the turbulent kinetic energy and its dissipation rate associated with the fixed point (/kS)=0, whereS is the shear rate. The classical form of the model transport equation for (Hanjalic and Launder, 1972) is used. The present analysis shows that, asymptotically, the turbulent kinetic energy (a) undergoes a power-law decay with time for (P/)<1, (b) is independent of time for (P/)=1, (c) undergoes a power-law growth with time for 1<(P/)<(C 2–1), and (d) is represented by an exponential law versus time for (P/)=(C 2–1)/(C 1–1) and (/kS)>0 whereP is the production rate. For the commonly used second-order models the equilibrium solutions forP/,II, andIII (whereII andIII are respectively the second and third invariants of the anisotropy tensor) depend on the rotation number when (P/kS)=(/kS)=0. The variation of (P/kS) andII versusR given by the second-order model of Yakhot and Orzag are compared with results of Rapid Distortion Theory corrected for decay (Townsend, 1970).  相似文献   

3.
The effect of external turbulence on the boundary layer flow in a convergent-divergent nozzle with a high expansion ratio has been studied numerically. The external turbulence was simulated by the turbulent viscosity e, for which we used the partial differential equation that serves to close the system of boundary layer equations [1–4]. It was found that there exists a critical value cr such that for all e< cr the flow regime in the nozzle remains perfectly laminar, whereas for ecr a laminar-turbulent transition takes place and the boundary layer in the supersonic part of the nozzle becomes turbulent. For postcritical values of e the heat fluxes and friction losses are approximately an order greater than for precritical values. With increase in the Reynolds number, determined from the parameters in the nozzle throat, the value of cr decreases; as the coordinate of the onset of boundary layer formation is displaced in the direction of flow the value of cr increases.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 34–37, January–February, 1906.The authors are grateful to L. V. Gogish for participating in the discussion of the results.  相似文献   

4.
We consider singularly perturbed systems , such that=f(, o, 0). o m , has a heteroclinic orbitu(t). We construct a bifurcation functionG(, ) such that the singular system has a heteroclinic orbit if and only ifG(, )=0 has a solution=(). We also apply this result to recover some theorems that have been proved using different approaches.  相似文献   

5.
In the case of the 3D Navier-Stokes equations, it is proved that there exists a constant>0 with the following property: Every time-periodic solution with a period smaller than is necessarily a stationary solution. An explicit formula for is also provided.  相似文献   

6.
This paper discusses the asymptotic behavior as 0+ of the chemical potentials associated with solutions of variational problems within the Van der Waals-Cahn-Hilliard theory of phase transitions in a fluid with free energy, per unit volume, given by 2¦¦2+ W(), where is the density. The main result is that is asymptotically equal to E/d+o(), with E the interfacial energy, per unit surface area, of the interface between phases, the (constant) sum of principal curvatures of the interface, and d the density jump across the interface. This result is in agreement with a formula conjectured by M. Gurtin and corresponds to the Gibbs-Thompson relation for surface tension, proved by G. Caginalp within the context of the phase field model of free boundaries arising from phase transitions.  相似文献   

7.
Zusammenfassung Zur Berechnung turbulenter Strömungen wird das k--Modell im Ansatz für die turbulente Scheinzähigkeit erweitert, so daß es den Querkrümmungs- und Dichteeinfluß auf den turbulenten Transportaustausch erfaßt. Die dabei zu bestimmenden Konstanten werden derart festgelegt, daß die bestmögliche Übereinstimmung zwischen Berechnung und Messung erzielt wird. Die numerische Integration der Grenzschichtgleichungen erfolgt unter Verwendung einer Transformation mit dem Differenzenverfahren vom Hermiteschen Typ. Das erweiterte Modell wird auf rotationssymmetrische Freistrahlen veränderlicher Dichte angewendet und zeigt Übereinstimmung zwischen Rechnung und Experiment.
On the influence of transvers-curvature and density in inhomogeneous turbulent free jets
The prediction of turbulent flows based on the k- model is extended to include the influence of transverse-curvature and density on the turbulent transport mechanisms. The empirical constants involved are adjusted such that the best agreement between predictions and experimental results is obtained. Using a transformation the boundary layer equations are solved numerically by means of a finite difference method of Hermitian type. The extended model is applied to predict the axisymmetric jet with variable density. The results of the calculations are in agreement with measurements.

Bezeichnungen Wirbelabsorptionskoeffizient - ci Massenkonzentration der Komponente i - cD, cL, c, c1, c2 Konstanten des Turbulenzmodells - d Düsendurchmesser - E bezogene Dissipationsrate - f bezogene Stromfunktion - f Korrekturfunktion für die turbulente Scheinzähigkeit - j turbulenter Diffusionsstrom - k Turbulenzenergie - ki Schrittweite in -Richtung - K dimensionslose Turbulenzenergie - L turbulentes Längenmaß - Mi Molmasse der Komponente i - p Druck - allgemeine Gaskonstante - r Querkoordinate - r0,5 Halbwertsbreite der Geschwindigkeit - r0,5c Halbwertsbreite der Konzentration - T Temperatur - u Geschwindigkeitskomponente in x-Richtung - v Geschwindigkeitskomponente in r-Richtung - x Längskoordinate - y allgemeine Funktion - Yi diskreter Wert der Funktion y - Relaxationsfaktor für Iteration - turbulente Dissipationsrate - transformierte r-Koordinate - kinematische Zähigkeit - Exponent - transformierte x-Koordinate - Dichte - k, Konstanten des Turbulenzmodells - Schubspannung - allgemeine Variable - Stromfunktion - Turbulente Transportgröße Indizes 0 Strahlanfang - m auf der Achse - r mit Berücksichtigung der Krümmung - t turbulent - mit Berücksichtigung der Dichte - im Unendlichen - Schwankungswert oder Ableitung einer Funktion - – Mittelwert Herrn Professor Dr.-Ing. R. Günther zum 70. Geburtstag gewidmet  相似文献   

8.
Let (X, ) and (Y,C) be two measurable spaces withX being a linear space. A system is determined by two functionsf(X): X X and:X×YX, a (small) positive parameter and a homogeneous Markov chain {y n } in (Y,C) which describes random perturbations. States of the system, say {x n X, n=0, 1,}, are determined by the iteration relations:x n+1 =f(x n )+(x n ,Yn+1) forn0, wherex 0 =x 0 is given. Here we study the asymptotic behavior of the solutionx n as 0 andn under various assumptions on the data. General results are applied to some problems in epidemics, genetics and demographics.Supported in part by NSF Grant DMS92-06677.Supported in part by NSF Grant DMS93-12255.  相似文献   

9.
Very few studies have been made of three-dimensional nonstationary cavitation flows. In [1, 2], differential equations were obtained for the shape of a nonstationary cavity by means of a method of sources and sinks distributed along the axis of thin axisymmetric body and the cavity. In the integro-differential equation obtained in the present paper, allowance is made for a number of additional terms, and this makes it possible to dispense with the requirement ¦ In ¦ 1 adopted in [1, 2]. The obtained equation is valid under the weaker restriction 1. In [3], the problem of determining the cavity shape is reduced to a system of integral equations. Examples of calculation of the cavity shape in accordance with the non-stationary equations of [1–3] are unknown. In [4], an equation is obtained for the shape of a thin axisymmetric nonstationary cavity on the basis of a semiempirical approach. In the present paper, an integro-differential equation for the shape of a thin axisymmetric nonstationary cavity is obtained to order 2 ( is a small constant parameter which has the order of the transverse-to-longitudinal dimension ratio of the system consisting of the cavity-forming body, the cavity, and the closing body). A boundary-value problem is formulated and an analytic solution to the corresponding differential equation is obtained in the first approximation (to terms of order 2 In ), A number of concrete examples is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 38–47, July–August, 1980.I thank V. P. Karlikov and Yu. L. Yakimov for interesting discussions of the work.  相似文献   

10.
The purpose of this study is the construction of interpolation formulas for the dependence of Maxwell viscosity, a quantity which is the reciprocal of shear-strain relaxation time , on shear-strain intensity and temperature for several metals: iron, aluminum, copper, and lead. This function was interpolated in various temperature and deformation velocity ranges in accordance with available experimental data for iron (0 107 sec–1, 200 ° T 1500 °); aluminum (0 107 sec–1, 300 ° T 900 °); copper (0 105 sec–1, 300 ° T 1300 °); lead (0 106 sec–1, 90 ° T 400 °); temperatures in °K.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 114–118, July–August, 1974.  相似文献   

11.
(黄家寅)(秦圣立)THEPROBLEMSOFNONLINEARBENDINGFORORTHOTROPICRECTANGULARPLATEWITHFOURCLAMPEDEDGES¥HuangJiayin;QinShengli(QufuNormalUn...  相似文献   

12.
In this paper we study the existence of invariant manifolds for a special type of nonautonomous systems which arise in the study of discretization methods. According to [10], a one-step scheme of step-size for an autonomous system can be interpreted as the -flow of a perturbed nonautonomous system. The perturbation is rapidly forced in the sense that it is periodic with respect to time with period . Assuming a saddle node for the autonomous system, we prove that these rapidly forced perturbations have center manifolds which exist in a uniform neighborhood and which converge to a center manifold of the autonomous system as tends to zero. Our results are applied to obtain a smooth continuation as well as estimates of the well known center manifolds for one-step schemes. They also form the basis for studying saddle-node homoclinic orbits under discretization.  相似文献   

13.
A turbulent square-duct flow is studied numerically using an anisotropic k- model, in which the deviation of the Reynolds stress from its isotropic eddy-viscosity representation plays a central role. The no slip boundary condition on the wall is imposed with the aid of wall damping functions. Various computed turbulent quantitites of a square-duct flow are compared with experimental and numerical results. The comparison shows that the present anisotropic k- model gives reasonable results to major characteristic properties in a duct flow such as the anisotropy of turbulent intensities and the secondary flow.  相似文献   

14.
In this paper, based on a similarity that exists between the constitutive relations for turbulent mean flow of a Newtonian fluid and that for the laminar flow of a non-Newtonian fluid, and making use of extended thermodynamics, we develop a generalized nonlinearK- model, whose approximate form includes the standardK- model and the nonlinearK- model of Speziale (1987) as special cases. Our nonlinearK- model, which is frame indifferent, can predict relaxation of the Reynolds stress, unlike most standardK- models. Also, our model is in keeping with that of Yakhotet al. (1992). Most interestingly, the linearized form of our model bears a striking resemblance to the model due to Yoshizawa and Nisizima (1993); however, it has been obtained from a totally different perspective.  相似文献   

15.
Zusammenfassung Zur Berechnung turbulenter Strömungen mit chemischen Reaktionen wird ein Schlie\ungsmodell 2. Ordnung vorgeschlagen, das auch die Berücksichtigung von chemischem Nichtgleichgewicht erlaubt. Es besteht aus dem k- Modell zur Schlie\ung der gemittelten Impulsgleichungen, einem thermodynamischen Modell zur Schlie\ung der Zustandsgieichungen und der Energiegleichung und einem Mischungsmodell, das den Grad der Vermischung der Komponenten beschreibt und damit die Schlie\ung der gemittelten Stofferhaltungsgleichungen erlaubt.Für die Behandlung der gemittelten reaktionskinetischen Quellterme der Stofferhaltungsgleichungen wird eine Modifikation des Reihenansatzes von Borghi [7] vorgeschlagen, der die AnnÄherung an den Gleichgewichtszustand besser beschreibt. Das Modell wird auf die von Batt [11, 12] vermessene ebene Scherströmung angewendet und zeigt gute übereinstimmung zwischen Rechnung und Experiment.
A method for predicting reacting turbulent shear flows with chemical non-equilibriums
A prediction model based on second order closure for the calculation of reacting turbulent flows including chemical non-equilibrium is put forward. It consists of the k- model for the closure of the mean momentum equations, the thermodynamic model for the closure of the mean equations of state and the mean energy-equation and the mixing model that describes the degree of mixedness of the components and consequently leads to the closure of the mean mass transport equations. A modification of the series truncation method of Borghi [7] is suggested that improves the representation of the mean chemical source terms as equilibrium is approached. The results of the calculations are compared with the measurements of Batt [11, 12] in a turbulent plane shear layer with and without reaction and show good agreement.

Bezeichnungen Ci,j Turbulenzkonstante - D Divergenz der Geschwindigkeit (m/s) - Db, Df Vorexponentielle Faktoren im Arrheniusansatz (m3/kmol) - Eb, Ef Exponenten im Arrheniusansatz - Fb, Ff Aktivierungsenergie (K) - Hi Bezugsenthalpie der i-ten Komponente (kJ/kg) - Ki,j Turbulenzkonstante - KON Anzahl der im System vorkommenden Komponenten - Mi Molmasse (kg/kmol) - NR Anzahl der im System vorkommenden Elementargleichungen - Qij Konzentrationskorrelation zwischen der i-ten und der j-ten Komponente (kg2/m6) - R Restglied der Taylorentwicklung für die Geschwindigkeitskoeffizienten - T Temperatur (K) - ab, af,bb, bf Koeffizienten der Taylorreihenentwicklung der Geschwindigkeitskoeffizienten - ci Massenkonzentration der i-ten Komponente - c1 Turbulenzkonstante der -Gleichung - c2 Turbulenzkonstante der -Gleichung - c3 Turbulenzkonstante der -Gleichung - cpi spezifische WÄrmekapazitÄt der i-ten Komponente (kJ/kg/K) - hi spezifische Enthalpie des Gesamtsystems (kJ/kg/K) - k Turbulenzenergie (m2/s2) - kfj, kbj Geschwindigkeit der j-ten Elementarreaktion (m3/kmol) - p Druck (N/m2) - v, (u,v,w) Geschwindigkeit (m/s) - x, (x,y,z) Raumkoordinate (m) - Molekularer Diffusionskoeffizient (m2/s) - Allgemeine Gaskonstante (kJ/kmol K) - wi Quellterm der Konzentrationserhaltungsgleichungen (kg/m3/s) - ijij stöchiometrische Koeffizienten deriten Komponente in der j-ten Elementarreaktion (VorwÄrtsreaktion ,RückwÄrtsreaktion) - ij Kronecker-Symbol - Turbulente Dissipation (m2/s3) - Molekulare WÄrmeleitfÄhigkeit (KJ/m/s/K) - Dynamische ZÄhigkeit (kg/m/s) - t Turbulente dynamische ZÄhigkeit(kg/ m/s) - kinematische ZÄhigkeit (m2/s) - t Turbulente kinematische ZÄhigkeit (m2/s) - Turbulente Prandtlzahl Mittelwert und Schwankungsgrö\en Unbewichteter Mittelwert - · Unbewichtete Schwankungsgrö\e - Bewichteter (Favre-) Mittelwert - · Bewichtete (Favre-)Schwankungsgrö\e Indizes i,j Komponentenindex - , Summations-oder Vektorindex (,=1,2,3) - b RückwÄrtsreaktion - f VorwÄrtsreaktion  相似文献   

16.
The combined effect of the turbulence intensity , the turbulence scaleL, and the Reynolds number Re** on the surface friction coefficientc f in a turbulent boundary layer is studied. The dependence of the relative friction increment on the equivalent turbulence level cq, which takes into account the simultaneous variation in ,L and Re**, is determined. The threshold value cq * below which the value ofc f does not depend on cq is found.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 65–75, March–April, 1995.  相似文献   

17.
In a number of experiments (see [1], in which experimental papers are listed), diffusion has been observed in the radial direction in the process of flow of a mixture along tubes at low pressures. The heavier molecules accumulate near the tube axis. The attempt made in [1] to explain this phenomenon by the influence of the Burnett contribution to the diffusion did not lead to success, and the Burnett terms in the radial diffusion velocity indicate a motion of heavy molecules away from the tube axis. In the present paper, a complete analysis is given of this phenomenon. We consider the problem of the flow of a mixture along a cylindrical tube of finite length for given pressure difference p between its ends. On the basis of the hydrodynamic equations of the Burnett and super-Burnett approximations, a consistent asymptotic (with respect to the small parameter ) solution is given; = (p/p)R/L is the relative change in the pressure along the tube at a distance of order R (R and L are the radii and length of the tube). Radial diffusion occurs in the quadratic approximation in . It is shown that the radial diffusion velocity contains new terms not present in [1]; these are due to the inhomogeneity of the temperature and the pressure over the tube section, the expansion of the gas, and the super-Burnett correction to the diffusion velocity. The most important is the thermodiffusion term, which is determined by the hydrodynamic equations of the Navier-Stokes approximation. The remaining terms have order relative to it of Kn2 (Kn = 1 /R is the Knudsen number, and 1 is the mean free path of the molecules). The expression obtained for the diffusion velocity agrees in sign with the experiment.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 91–96, September–October, 1979.I am grateful to G. E. Skvortsov, who drew my attention to this problem, and Yu. N. Grigor'ev for discussing the results.  相似文献   

18.
Spatial problems involving the electric field in an MHD channel were formulated in [1] with allowance for the electrode potential drop. It was assumed that the electrode layer had a small thickness, so that relationships on the boundary of the layer could be applied to the surface of the electrode. It was assumed that the electrode potential drop ° could be represented as a function of the current density jn at the electrode in the form of a known function ° =f (jn) determined experimentally or deduced from the appropriate electrode-layer theory. An approximate method was then put forward for solving such problems by reducing them to the determination of the electric field from a known distribution of the magnetic field and the gas-dynamic parameters. It was shown that when =°/ E is small (E is the characteristic induced or applied potential difference), the solution can be sought in the form of series in powers of . In the zero-order approximation, the electric field is determined without taking into account the electrode processes. The first approximation gives a correction of the order of . The quantity °, which is present in the boundary conditions on the electrode in the first-order approximation, is determined from the current density calculated in the zero-order approximation.One of the problems discussed in [1] was concerned with the electric current in a channel with one pair of symmetric electrodes. Its solution was found in the first approximation in the form of the integral Keldysh-Sedov formula. In this paper we report an analysis of the solution for ° taken in the form of a step function.  相似文献   

19.
We describe a system in which vortices are shed from a cylindrical free surface approximately centered in a rotating flow. Shedding is controlled by the parameter =2 g/ 2 d, where g, , d denote gravity, rotation rate and the diameter of the free surface. We find vortex shedding for >0.162 and no vortex shedding for < 0.0847. The range depends on the aspect ratio L/d, where L is the column length, in a nonmonotonic fashion. These results are independent of viscosity and surface tension for small values of these parameters.Now at Martin Marietta, Orlando Aerospace, PO Box 5837, Mail Point 150, Orlando, FL 32855, USA  相似文献   

20.
With time domain reflectometry (TDR) two dispersive parameters, the dielectric constant, , and the electrical conductivity, can be measured. Both parameters are nonlinear functions of the volume fractions in soil. Because the volume function of water ( w) can change widely in the same soil, empirical equations have been derived to describe these relations. In this paper, a theoretical model is proposed based upon the theory of dispersive behaviour. This is compared with the empirical equations. The agreement between the empirical and theoretical aproaches was highly significant: the ( w) relation of Topp et al. had a coefficient of determination r 2 = 0.996 and the (u) relation of Smith and Tice, for the unfrozen water content, u, at temperatures below 0°C, had an r 2 = 0.997. To obtain ( w) relations, calibration measurements were performed on two soils: Caledon sand and Guelph silt loam. For both soils, an r 2 = 0.983 was obtained between the theoretical model and the measured values. The correct relations are especially important at low water contents, where the interaction between water molecules and soil particles is strong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号