首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermodynamics of complexation of cesium cation by dibenzo-24-crown-8 was studied in three binary solvent mixtures: acetonitrile-nitromethane (AN/NM),N,N-dimethylformamide-nitromethane (DMF/NM) and acetonitrile-propylene carbonate (AN/PC) using the133Cs-NMR technique. In all cases the variation of the formation constant,K f, with the solvent composition was monotonic:K f increased as the mole-% of the solvent of low donicity was increased. The temperature dependence ofK f indicated that the complexes are generally enthalpy stabilized, but entropy destabilized. The enthalpy and entropy of complexation reactions are quite sensitive to the solvent composition. However, their variation with solvent composition was not monotonic but showed maxima or minima at the isosolvation points of the cation or the complexed cation. In all cases an enthalpy-entropy compensating effect was observed.  相似文献   

2.
The complexation reaction of macrocyclic ligand, dibenzo-18-crown-6 (DB18C6) with UO2 2+ cation was studied in ethylacetate-1,2-dichloroethane (EtOAc/DCE), acetonitrile-1,2-dichloroethane (AN/DCE), methanol-1,2-dichloroethane (MeOH/DCE) and ethanol-1,2-dichloroethane (EtOH/DCE) binary solutions at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complex formed between DB18C6 and UO2 2+ cation is affected by the nature of the solvent systems. A non-linear behaviour was observed for changes of log K f of (DB18C6.UO2)+2 complex versus the composition of the binary mixed solvents. The values of thermodynamic quantities (?S°c, ?H°c) for formation of (DB18C6.UO2)+2 complex were obtained from temperature dependence of the stability constant using the van’t Hoff plots. The results show that in most cases, the complex is enthalpy stabilized and in all cases entropy stabilized and both parameters are affected by the nature and composition of the mixed solvents. In addition, the complex formation between dicyclohexyl-18-crown-6 (DCH18C6) and UO2 2+ cation was studied in pure AN and the results were compared with those of the (DB18C6.UO2)+2 complex.  相似文献   

3.
The complexation reaction of macrocyclic ligand, dibenzo-24-crown-8 (DB24C8) with Y+3 cation was studied in some binary mixtures of methanol (MeOH), ethanol (EtOH), acetonitrile (AN) and tetrahydrofuran (THF) with dimethylformamide (DMF) at different temperatures using the conductometric method. The conductance data show that in all solvent systems, the stoichiometry of the complex formed between DB24C8 and Y+3 cation is 1:1 (ML). The stability order of (DB24C8.Y)+3 complex in pure non-aqueous solvents was found to be: AN > EtOH > MeOH > DMF. A non-linear behaviour was observed for changes of log Kf of (DB24C8.Y)+3 complex versus the composition of the binary mixed solvents, which was explained in terms of solvent–solvent interactions and also the heteroselective solvation of the species involved in the complexation reaction. The obtained results show that the stability of (DB24C8.Y)+3 complex is sensitive to the mixed solvents composition. The values of thermodynamic parameters (?H°c and ?S°c) for formation of (DB24C8.Y)+3 complex were obtained from temperature dependence of the stability constant using the van’t Hoff plots. The results show that in most cases, the (DB24C8.Y)+3 complex is enthalpy destabilized but entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.  相似文献   

4.
The complexation reaction of 4,13-diaza-18-crown-6 (DA18C6) with Y3+ cation was studied in some binary mixed solvent solutions of acetonitrile (AN) with methanol (MeOH), ethanol (EtOH), 2-propanol (2-PrOH) and methyl acetate (MeOAc) at different temperatures by conductometric method. The obtained data show that in all studied solutions the stoichiometry of the complex formed between DA18C6 and Y3+ cation is 1: 1 [ML], but in the case of pure MeOAc, a 2: 1 [ML2] complex is formed in solution upon addition of the ligand to the metal salt solution, and further addition of the ligand results in formation of a M2L2 complex in solution. This results show that the stoichiometry of the composition of the macrocyclic complexes may be affected by the nature of the solvent system. The results obtained in this study show that the stability constant of the resulting 1: 1 [ML] complex in the binary solvent solutions decreases in the order: AN-MeOAc > AN-2PrOH > AN-MeOH > AN-EtOH. A non-linear relationship was observed between the stability constant (logK f ) of [Y(DA18C6)]3+ complex with the composition of the binary mixed solvent solutions. The corresponding standard thermodynamic parameters (H° c , Δ S° c ) for 1: 1 [ML] complexation reaction between DA18C6 and Y3+ cation were obtained from temperature dependence of the stability constant of the complex. The results show that, in all solvent systems, the (DAI8C6.Y)3+ complex is entropy stabilized, but from enthalpy point of view, depending on the solvent system, it is stabilized or destabilized and the result show that the values of both thermodynamic quantities change with the nature and composition of the binary mixed solvent solutions.  相似文献   

5.
The complexation reaction of N-phenylaza-15-crown-5 (PhA15C5) with UO2 2+ cation was studied in acetonitrile–methanol (AN–MeOH), acetonitrile–butanol (AN–BuOH), acetonitrile–dimethylformamide (AN–DMF) and methanol–propylencarbonate (MeOH–PC) binary solutions, at different temperatures by conductometry method. The conductance data show that the stoichiometry of the complex formed between PhA15C5 with UO2 2+ cation in most cases is 1:1 [M:L], but in some solvent systems a 1:2 [M:L2] complex is formed in solutions. The results revealed that, the stability constant of (PhA15C5·UO2)2+ complex in the binary mixed solvents varies in the order: AN–BuOH>AN–MeOH>AN–DMF. In the case of the pure organic solvents, the sequence of the stability of the complex changes as: AN>PC>BuOH>DMF. A non-linear relationship was observed for changes of logKf of (PhA15C5·UO2)2+ complex versus the composition of the binary mixed solvents. The corresponding standard thermodynamic parameters (ΔHc°, ΔSc°) were obtained from temperature dependence of the stability constant. The results show that the values and also the sign of these parameters are influenced by the nature and composition of the mixed solvents.  相似文献   

6.
7.
The stability constants of the [Cs(DB18C6)]+ complex (DB18C6 is dibenzo-18-crown-6, L) in hydrophobic ionic liquids (room-temperature ionic liquids, RTIL) trioctylmethylammonium salicylate ([TOMA][Sal]), tetrahexylammnoium dihexylsulfosuccinate ([THA][DHSS]), and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([BMIM][N(Tf)2], as well as of the [Cs(18C6)2]+ complex in [BMIM][N(Tf)2], were measured by 133Cs NMR in the temperature range 27–57°C. The changes in the enthalpy and entropy of complex formation were determined. A linear correlation was revealed between logK 1 and the extraction factor logD CsDB18C6 for the cesium extraction from an aqueous solution into the RTIL.  相似文献   

8.

Abstract  

By using quantum mechanical calculations, the most probable structures of free dibenzo-18-crown-6 ligand and the cationic complex species of Cs+ both with one and with two dibenzo-18-crown-6 ligands were derived. In these two complexes, the “central” cation Cs+ is bound by strong bond interactions to the corresponding ethereal oxygen atoms of the parent crown ligand.  相似文献   

9.
In the present work the complexation process between UO2 2+ cation and the macrocyclic ligand, dibenzo-18-crown-6 (DB18C6) was studied in ethylacetate–dimethylformamide (EtOAc/DMF), ethylacetate–acetonitrile (EtOAc/AN), and ethylacetate–tetrahydrofuran (EtOAc/THF) and ethylacetate–propylencarbonate (EtOAc/PC) binary solutions at different temperatures using the conductometric method. The results show that the stoichiometry of the (DB18C6 . UO2)2+ complex in all binary mixed solvents is 1:1. A non-linear behavior was observed for changes of log Kf of this complex versus the composition of the binary mixed solvents. The stability constant of (DB18C6 . UO2)2+ complex in various neat solvents at 25 °C decreases in order: THF > EtOAc > PC > AN > DMF, and in the binary solvents at 25 °C is: THF–EtOAc > PC–EtOAc > DMF–EtOAc ≈ AN–EtOAc. The values of thermodynamic quantities (?H°c, ?S°c) for formation of this complex in the different binary solutions were obtained from temperature dependence of its stability constant and the results show that the thermodynamics of complexation reaction between UO2 2+ cation and DB18C6 is affected strongly by the nature and composition of the mixed solvents.  相似文献   

10.
The complexation reaction between UO2 2+ cation with macrocyclic ligand, 18-crown-6 (18C6), was studied in acetonitrile–methanol (AN–MeOH), nitromethane–methanol (NM–MeOH) and propylencarbonate–ethanol (PC–EtOH) binary mixed systems at 25 °C. In addition, the complexation process between UO2 2+ cation with diaza-18-crown-6 (DA18C6) was studied in acetonitrile–methanol (AN–MeOH), acetonitrile–ethanol (AN–EtOH), acetonitrile–ethylacetate (AN–EtOAc), methanol–water (MeOH–H2O), ethanol–water (EtOH–H2O), acetonitrile–water (AN–H2O), dimethylformamide–methanol (DMF–MeOH), dimethylformamide–ethanol (DMF–EtOH), and dimethylformamide–ethylacetate (DMF–EtOAc) binary solutions at 25 °C using the conductometric method. The conductance data show that the stoichiometry of the complexes formed between (18C6) and (DA18C6) with UO2 2+ cation in most cases is 1:1 [M:L], but in some solvent 1:2 [M:L2] complex is formed in solutions. The values of stability constants (log Kf) of (18C6 · UO2 2+) and (DA18C6 · UO2 2+) complexes which were obtained from conductometric data, show that the nature and also the composition of the solvent systems are important factors that are effective on the stability and even the stoichiometry of the complexes formed in solutions. In all cases, a non-linear relationship is observed for the changes of stability constants (log Kf) of the (18C6 · UO2 2+) and (DA18C6 · UO2 2+) complexes versus the composition of the binary mixed solvents. The stability order of (18C6 · UO2 2+) complex in pure studied solvents was found to be: EtOH > AN ≈ NM > PC ≈ MeOH, but in the case of (DA18C6 · UO2 2+) complex it was : H2O > MeOH > EtOH.  相似文献   

11.
In the present work, the complexation process between UO2 2+ cation and the macrocyclic ligand, dicyclohexyl-18-crown-6 (DCH18C6) was studied in ethyl acetate/1,2-dichloroethane (EtOAc/DCE), acetonitrile/1,2-dichloroethane (AN/DCE), methanol/1,2-dichloroethane (MeOH/DCE) and ethanol/1,2-dichloroethane (EtOH/DCE) binary solutions at different temperatures using the conductometric method. The conductance data show that in most cases, the stoichiometry of the complex formed between DCH18C6 and UO2 2+ cation is 1:1 [M:L], but in some solvent systems also a 1:2 [M:L2] complex is formed in solutions. The values of stability constant of (DCH18C6·UO2)2+ complex which were obtained from conductometric data, show that the stability of the complex is affected by the nature and also the composition of the solvent system and in all cases, a non-linear behavior is observed for the variation of (log?K f) of the (DCH18C6·UO2)2+ complex versus the composition of the binary mixed solvents. The values of thermodynamic quantities $ \Updelta H_{c}^{\circ} $ and $ \Updelta S_{c}^{\circ} $ for formation of (DCH18C6·UO2)2+ complex were obtained from temperature dependence of the stability constant using the van’t Hoff plots. The experimental results show that depending on the nature and composition of the solvent systems, the complex is enthalpy stabilized or destabilized, but in most cases, it is stabilized from entropy view point and both thermodynamic parameters are affected by the nature and composition of the binary mixed solutions.  相似文献   

12.
The stability constant (log K f) and the thermodynamic parameters (free energies, enthalpies, and entropies) of the complexation of Co2+ cation with 15-crown-5 (15C5) in acetonitrile-methanol (AN/MeOH), acetonitrile-nitrobenzene (AN/NB), acetonitrile-dichloromethane (AN/DCM) and acetonitrile-1,2-dichloroethane (AN/DCE) binary solvent solutions were calculated from the experimental conductance data at different temperatures. The complexation behavior of the crown ether used in these media was discussed in view of the estimated parameters. In all solvent systems, 15-crown-5 formed a 1: 1 complex with Co2+ cation. The stability order of (Co-15C5)2+ complex in the binary mixed solvents at 25°C was found to be: AN/NB > AN/DCM ≈ AN/DCE > AN/MeOH. In most cases, a non-linear relationship was observed for changes of log K f of (Co-15C5)2+ complex versus the composition of the binary mixed solvent systems. The experimental results show that the standard thermodynamic parameters of the complexation process change with the nature and composition of the binary solvent solutions.  相似文献   

13.
14.
15.

Abstract  

Extraction experiments in the two-phase water/nitrobenzene system and γ-activity measurements were used to determine the stability constant of the dibenzo-18-crown-6·Ag+ complex species in nitrobenzene saturated with water. Furthermore, the structure of the resulting complex was derived by means of theoretical calculations at the density functional level.  相似文献   

16.
The complexation reactions between alkali and alkaline-earth metal cations with DB18C6 were studied in acetonitrile-methanol (AN-MeOH) and tetrahydrofuran-threechloromethane (THF-CHCl3) binary mixtures at different temperatures using the conductometric method. The obtained results show that in most cases, the DB18C6 forms 1:1 complexes with these metal cations and the stability of the complexes is affected by the nature and composition of the mixed solvents. The stability order of complexes in AN-MeOH binary systems was found to be Na+ > Li+, and in the case of THF-CHCl3 binary mixtures was Na+ > Ba2+ > Li+. An anomalous and interesting behavior was observed for the case of complexation of a K+ ion with DB18C6 in the AN-MeOH binary mixture and also for complexation of Mg2+ and Ca2+ cations with this ligand in pure THF and also in THF-CHCl3 binary systems. The values of the thermodynamic parameters (ΔH c o and ΔS c o ) for complexation reactions obtained from the temperature dependence of the stability constants and the results show that the complexes are both enthalpy-and entropy-stabilized. The text was submitted by the authors in English.  相似文献   

17.
Two constitutional isomers of dibenzo-18-crown-6 derivatives (6 and 7) were synthesised and their binding behaviours towards trivalent lanthanoid cations (La3 + , Ce3 + , Pr3 + , Nd3 + , Sm3 + , Eu3 + , Gd3 +  and Tb3 + ) were investigated. Both isomers expressed better binding affinities towards Sm3 +  and Tb3 +  than a group of other lanthanoids, as measured by the ligand-to-metal charge-transfer (LMCT) band intensity at ca. 425 nm using UV–vis spectroscopic method. Additionally, the trans isomer 7 was shown to have a higher binding ability than the cis isomer 6 towards Tb3 + .

  相似文献   

18.
《Polyhedron》1986,5(8):1329-1333
Complexation of the cesium ion with macrocyclic ligands, dibenzo-21-crown-7 and dibenzo-24-crown-8, was studied in binary solvent mixtures of dimethylsulfoxide with acetone, acetonitrile, propylene carbonate, pyridine and hexamethylphosphoramide (HMPA) as well as in pyridine-methanol mixtures. In the first four binary mixtures the complexation constants increased with decreasing amounts of dimethylsulfoxide (DMSO), the trend is reversed in the DMSO-HMPA system. In all of the above cases, the variation of the stability constant with composition was monotonic and showed good correlation with the inherent solvating ability of the neat solvents which form the mixture. In the pyridine-methanol system, however, for both complexes, the log Kf vs composition plots show several changes in direction. This behavior is probably due to a change in the structure of this binary solvent as the composition of the medium is varied.  相似文献   

19.
The complexation reaction between Y3+ cation with N-phenylaza-15-crown-5(Ph-N15C5) was studied at different temperatures in acetonitrile–methanol (AN/MeOH), acetonitrile–propanol (AN/PrOH), acetonitrile–1,2 dichloroethane (AN/DCE) and acetonitrile–water (AN/H2O) binary mixtures using the conductometric method. The results show that in all cases, the stoichiometry of the complex is 1:1 (ML). The values of formation constant of the complex which were determined using conductometric data, show that the stability of (Ph-N15C5.Y)3+ complex in pure solvents at 25?°C changes in the following order: PrOH?>?AN?>?MeOH and in the case of binary mixed solutions at 25?°C it follows the order: AN–DCE?>?AN–PrOH?>?AN–MeOH?>?AN–H2O. The values of standard thermodynamic quantities (?H c ° and ?S c ° ) for formation of (Ph-N15C5.Y)3+ complex were obtained from temperature dependence of the formation constant using the van’t Hoff plots. The results show that in most cases, the complex is entropy and enthalpy stabilized and these parameters are influenced by the nature and composition of the mixed solvents. In most cases, a non-linear behavior was observed for variation of log Kf of the complex versus the composition of the binary mixed solvents. In all cases, an enthalpy–entropy compensation effect was observed for formation of (Ph-N15C5.Y)3+ complex in the binary mixed solvents.  相似文献   

20.
Compounds of the compositions [2(18-crown-6)6(H2O)2(C2H4Cl2){Pt2+(C2H4)}(Pt2Cl10)2–], [4(18-crown-6)2(OH3)+2(OH2)2(NH3)(Pt2Cl10)2–], [(dibenzo-18-crown-6)6(H2O){Pt2+(C2H4)}(Pt2Cl10)2–], and [4(dibenzo-18-crown-6)2(OH3)+2(OH2)2(NH3)Pt2Cl10)2–] were prepared by reactions of H2PtCl6 with 18-crown-6 and dibenzo-18-crown-6.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 10, 2004, pp. 1593–1599.Original Russian Text Copyright © 2004 by Guseva, Busygina, Khasanshin, Polovnyak, Yarkova, Yusupov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号