首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In present work the complexation of Res with two kinds of cyclodextrins (CDs), native β-cyclodextrin (β-CD) and modified hydroxypropyl-β-cyclodextrin (HP-CD), have been investigated by fluorescence spectroscopy, 1H-NMR spectroscopy and molecular modeling methods. The stoichiometric ratios, inclusion constants and thermodynamic parameters have been determined by the fluorescence data. In all cases 1:1 inclusion complexes are formed. The inclusion ability of HP-CD is larger than that of β-CD. Both inclusion processes have negative ?G, negative ?H and positive ?S. Thermodynamic analysis suggests that Van der Waals force of guest-host interactions and the release of high-enthalpy water molecules from the cavity of CDs play important roles in driving complex formation. The study of molecular modeling shows that part of the A-ring and the B-ring of Res are placed in the cavity of β-CD, and the hydroxyl groups are projected outside. As for Res in HP-CD, the B-ring of Res is included in the cavity of HP-CD, and part of the A-ring is pointed outside. 1H-NMR spectroscopy results show that H2, H3, H4 and H5 protons of Res are more affected by the complexatin, indicating that they are located inside the torus of CDs, which are in agreement with the result of the molecular modeling.  相似文献   

2.
The formation of the complexes of baicalein (Ba) with β-cyclodextrin (β-CD) and β-CD derivatives (HP-β-CD and Me-β-CD) was studied by UV–vis absorption spectroscopy, fluorescence method, nuclear magnetic resonance spectroscopy and phase-solubility measurement. The solid–inclusion complexes of Ba with CDs were synthesised by the co-precipitation method. The characterisations of the solid–inclusion complexes have been proved by infrared spectra and differential scanning calorimetry. Experimental conditions including the concentration of various CDs and media acidity were investigated in detail. The results suggested that the inclusion ratio of HP-β-CD with Ba was the highest among the three kinds of CDs. The binding constants (Ks) of the inclusion complexes were determined by fluorescence method and phase-solubility measurement. Kinetic studies of DPPH√ with Ba and CDs complexes were also done. The results indicated that the Ba/HP-β-CD complex was the most reactive form.  相似文献   

3.
Measurement of total antioxidant activity/capacity of polyphenols in various solvent media necessitates the use of cyclodextrins to solubilize lipophilic antioxidants of poor aqueous solubility. The inclusion complexes of the slightly water soluble antioxidant, rosmarinic acid (RA), with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxyethyl-β-cyclodextrin (HE-β-CD), and methyl-β-cyclodextrin (M-β-CD) were investigated for the first time. The effect of cyclodextrins (CDs) on the spectral features of RA was measured in aqueous medium using UV-vis and steady-state fluorescence techniques by varying the concentrations of CDs. The molar stoichiometry of RA-CD inclusion complexes was verified as 1:1, and the formation constants of the complexes were determined from Benesi-Hildebrand equation using fluorescence spectroscopic data. Among the CDs, maximum inclusion ability was measured in the case of M-β-CD followed by HP-β-CD, HE-β-CD, β-CD and α-CD. Solid inclusion complexes were prepared by freeze drying, and their functional groups were analyzed by IR spectroscopy. Antioxidant capacity of CD-complexed rosmarinic acid was measured to be higher than that of the lone hydroxycinnamic acid by the CUPric Reducing Antioxidant Capacity (CUPRAC) method. The mechanism of the TAC increase was interpreted as the stabilization of the 1-e oxidized o-catechol moiety of RA by enhanced intramolecular H-bonding in a hydrophobic environment provided by CDs, mostly by M-β-CD.  相似文献   

4.
The inclusion complexes of four flavonols with modified cyclodextrins (CDs) have been investigated. The effect of heptakis (2,6-di-O-methyl) β-cyclodextrin (DM-β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) on the aqueous solubility of flavonols, namely, galangin, kaempferol, quercetin, and myricetin was investigated, respectively. The increased solubility of all flavonols in the presence of CD was evidenced. The NMR experiment and molecular modeling studies showed that flavonols interact with each modified CD through different binding modes. Flavonols can complex with CDs largely by two binding modes. The first one is that B-ring of flavonols is oriented toward secondary rim of CD. The second one is that A-ring of flavonols is oriented toward secondary rim of CD. Whereas only the first mode was observed in DM-β-CD complexes, both the first and the second mode were observed in HP-β-CD complexes in this study.  相似文献   

5.
The characterization, inclusion complexation behavior and binding ability of the inclusion complexes of dihydroartemisinin with β-cyclodextrin and its derivatives, sulfobutyl ether β-cyclodextrin (SBE-β-CD), mono[6-(2-aminoethylamino)-6-deoxy]-β-cyclodextrin (en-β-CD) and mono{6-[2-(2-aminoethylamino)ethylamino]-6-deoxy}-β-cyclodextrin (dien-β-CD), were studied using phenolphthalein as a spectral probe. Spectral titration was performed in aqueous buffer solution (pH ca. 10.5) at 25 °C to determine the binding constants. The inclusion complexation behaviors were investigated in both solution and solid state by means of NMR, TG, XRD. The results showed that the water solubility and thermal stability of dihydroartemisinin were significantly increased in the inclusion complex with cyclodextrins (CDs). According to 1H NMR and 2D NMR spectroscopy (ROESY), the A, B rings of dihydroartemisinin can be included into the cavity of CDs. The enhanced binding ability of CDs towards dihydroartemisinin was discussed from the viewpoint of the size/shape-fit concept and multiple recognition mechanism between host and guest.  相似文献   

6.
The aim of the study was to synthesize and characterization the inclusion complexes of amlodipine besylate (AML) drug with β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) which has antioxidating activity property. The guest/host interaction of AML with β-CD and γ-CD in order to complexation drug in β-CD and γ-CD were investigated. The interaction inclusion complexes was characterized by fourier transform infrared and ultraviolet–visible spectroscopies. The formation constant was calculated by using a modified Benesi–Hildebrand equation at 25 °C. The stoichiometry of inclusion complexes was found to be 1:1 for β-CD and γ-CD with AML drug. The antioxidant activity of AML drug and its inclusion complexes were determined by the scavenging of stable radical 2,2′-diphenyl-1-picrylhydrazyl (DPPH·). Kinetic studies of DPPH· with AML and CDs complexes were done. The experimental results confirmed the forming of AML complexes with CDs also these indicated that the AML/β-CD and AML/γ-CD inclusion complexes was the most reactive than its free form into antioxidant activity.  相似文献   

7.
The thermodynamics and stoichiometry of zaleplon (ZAL) complexation with different cyclodextrin derivatives [β-CD, hydroxypropyl-β-cyclodextrin (HP-β-CD), randomly methylated-β-cyclodextrin (RAMEB), sulphobutylether-β-cyclodextrin (SBE-β-CD)] in aqueous solution was studied by spectrofluorimetry and 1H NMR spectroscopy in order to obtain a more general understanding of the driving forces behind the inclusion phenomena. Job’s plot derived from the NMR spectral data and statistical analysis of spectrofluorimetric titration data confirmed the formation of equimolar complexes in all systems tested, excluding the possibility of higher order complex formation. Furthermore, thermodynamic parameters obtained by both techniques gave similar and negative values of ΔG° for all complexes, indicating spontaneous inclusion of drug into CDs. From a thermodynamic point of view, two types of inclusions were determined. One is enthalpy driven ZAL complexation with β-CD, HP-β-CD and RAMEB, while the other is entropy driven complexation observed in the case of SBE-β-CD. The mechanisms behind each type of inclusion were discussed in detail.  相似文献   

8.
采用荧光光谱法研究了β-环糊精(β-CD)、甲基-β-环糊精(M-β-CD)、羟丙基-β-环糊精(HP-β-CD)、磺丁基-β-环糊精(SBE-β-CD)对维生素B_1的包合作用.在固定维生素B_1浓度和改变环糊精及其衍生物浓度的情况下,维生素B_1的荧光发射波长的变化以及荧光强度的增强表明了包合物的形成,用荧光双倒数法计算了环糊精及其衍生物与维生素B_1的包合常数.实验结果表明:在pH=7.4的体系中,β-环糊精对维生素B_1的包合能力最强,且四种环糊精与维生素B_1的包合物的包合比均为1∶1.  相似文献   

9.
In the present study influence of nature of selected cyclodextrins (CDs) and of methods of preparation of drug–CD complexes on the oral bioavailability, in vitro dissolution studies and pharmacodynamic activity of a sparingly water soluble drug rosuvastatin (RVS) was investigated. Phase solubility studies were conducted to find the interaction of RVS with β-CD and its derivatives, which indicated the formation of 1:1 stoichiometric inclusion complex. The apparent stability constant (K1:1) calculated from phase solubility diagram were in the rank order of β-CD < hydroxypropyl-β-cyclodextrin (HP-β-CD) < randomly methylated-β-cyclodextrin (RM-β-CD). Equimolar drug–CD solid complexes prepared by different methods were characterized by the Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). FTIR study demonstrated the presence of intermolecular hydrogen bonds and ordering of the molecule between RVS and CDs in inclusion complexes. DSC and XRD analysis confirmed formation of inclusion complex by freeze dried method with HP-β-CD and RM-β-CD. Aqueous solubility and dissolution studies indicated improved dissolution rates of prepared complexes in comparison with drug alone. Moreover, CD complexes demonstrated of significant improvement in reducing total cholesterol and triglycerides levels as compared to pure drug. However the in vivo results only partially agreed with those obtained from phase solubility studies.  相似文献   

10.
Resibufogenin (RBG) is a natural medicinal ingredient with promising cardiac protection and antitumor activity. However, poor solubility and severe gastric mucosa irritation restrict its application in the pharmaceutical field. In this study, the inclusion complex of RBG with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was prepared using the co-evaporation method, and the molar ratio of RBG to CD was determined to be approximately 1:2 by continuous variation plot for both CDs. The formation of inclusion complexes between RBG and each CD (RBG/β-CD and RBG/HP-β-CD) was evaluated by phase solubility study, Fourier transform infrared spectroscopy, and thin-layer chromatography. Powder X-ray diffraction and differential scanning calorimetry confirmed drug amorphization and encapsulation in the molecular cage for both CDs. Moreover, the inclusion complexes’ morphologies were observed using scanning electron microscopy. The dissolution rate of the inclusion complexes was markedly improved compared to that of RBG, and the complexes retained their antitumor activity, as shown in the in vitro cytotoxicity assay on a human lung adenocarcinoma cancer (A549) cell line. Moreover, less gastric mucosal irritation was observed for the inclusion complex. Thus, the inclusion complex should be considered a promising strategy for the delivery of poorly water-soluble anticancer agents, such as RBG.  相似文献   

11.
Nitroheterocyclic compounds (NC) were candidate drugs proposed for Chagas disease chemotherapy. In this study, we investigated the complexation of hydroxymethylnitrofurazone (NFOH), a potential antichagasic compound, with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), Hydroxypropyl-β-cyclodextrin (HP-β-CD), Dimethyl-β-cyclodextrin (DM-β-CD) and γ-cyclodextrin (γ-CD) by fluorescence spectroscopy and molecular modeling studies. Hildebrand–Benesi equation was used to calculate the formation constants of NFOH with cyclodextrins based on the fluorescence differences in the CDs solution. The complexing capacity of NFOH with different CDs was compared through the results of association constant according to the following order: DM-β-CD > β-CD > α-CD > HP-β-CD > γ-CD. Molecular modeling studies give support for the experimental assignments, in favor of the formation of an inclusion complex between cyclodextrins with NFOH. This is an important study to investigate the effects of different kinds of cyclodextrins on the inclusion complex formation with NFOH and to better characterize a potential formulations to be used as therapeutic options for the oral treatment of Chagas disease.  相似文献   

12.
The inclusion complexation behaviour of ferulic acid (FA) with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) was investigated by UV–vis, fluorescence and 1H NMR spectroscopy. Since the guest may exist in either anionic or neutral form, the experiments were performed at different pH values. The stoichiometry and association constants of the complexes were determined by nonlinear regression analysis. The phase-solubility studies indicated that the water solubility of FA was improved through complexation with β-CD and HP-β-CD. An increase in the antioxidant reactivity was observed when inclusion complexes that FA formed with CDs were studied. Based on the NMR data, the spatial configurations of FA/β-CD and FA/HP-β-CD complexes were proposed, which suggested that FA entered into the cavity of β-CD from the narrow side, with the lipophilic aromatic ring and ethylenic moieties inside the CD cavity, and the –COOH group was close to the wider rim and exposed outside the cavity. A theoretical study of the complexes using molecular modelling gives the results in good agreement with the NMR data.  相似文献   

13.
At around 5×10-6?mol?dm-3 of hematoporphyrin (HP), an HP dimer exists as well as an HP monomer. The equilibrium constant for the dimerization of HP in pH 10.0 buffer has been evaluated to be 1.70×105?mol-1?dm3 from the HP concentration dependence of the absorption spectrum. In aqueous solution, HP forms 1:1 inclusion complexes with β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD). The fluorescence of HP is significantly enhanced by the addition of CDs. From simulations of the fluorescence intensity changes, the equilibrium constants for the formation of the CD–HP inclusion complexes have been estimated to be 200, 95.7, and 938?mol-1?dm3 for β-CD, γ-CD, and TM-β-CD, respectively. HP forms a 1:1 complex with 1,1′-diheptyl-4,4′-bipyridinium dibromide (DHB) in aqueous solution. In contrast to the addition of CDs, the HP fluorescence is significantly quenched by the addition of DHB. The equilibrium constant for the formation of the HP–DHB complex has been evaluated to be 1.98×105?mol-1?dm3 from the fluorescence intensity change of HP. The addition of DHB to an HP solution containing β-CD induces a circular dichroism signal of negative sign, indicating the formation of a ternary inclusion complex involving β-CD, HP, and DHB. In contrast, there is no evidence for the formation of a ternary inclusion complex of HP with DHB and TM-β-CD.  相似文献   

14.
The interactions of the neurotransmitter dopamine (DA) with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was characterized using UV–visible, 2D fluorescence, 3D fluorescence, FT–IR, PXRD and SEM techniques. PM3, PM7 and DFT methods were used to optimize the structures of the inclusion complexes in the gas phase. The absorbance and fluorescence intensities of DA increased in the presence of CDs in aqueous solution. The binding energy, HOMO–LUMO energy gap and Mulliken atomic charges were computed for the inclusion complexes. NBO analysis revealed a greater number of intermolecular hydrogen bonds in DA:HP-β-CD. Experimental and theoretical results suggested that the DA molecule is deeply embedded in the cavities of both CDs.  相似文献   

15.
采用荧光光谱、差热扫描和核磁共振法,研究了不同酸度下吡罗昔康(PX)与β-环糊精(β-CD)、羟丙基-β-环糊精(HP-β-CD)和磺丁醚-β-环糊精(SBE-β-CD)的包合特性。 结果表明,吡罗昔康与3种环糊精均形成了1∶2.5的包合物。 以包合常数为包合能力的量度,中性条件下,包合平衡常数分别为1.2×106、1.8×106、2.0×106,3种环糊精的包合能力为SBE-β-CD>HP-β-CD>β-CD。  相似文献   

16.
The ability of β-cyclodextrin (β-CD), γ-CD, hydroxypropyl-β-CD (HP-β-CD), trimethyl-β-CD (TM-β-CD), sulfurbutylether-β-CD (SBE-β-CD) and carboxymethyl-β-cyclodextrin (CM-β-CD) to break the aggregate of the meso-tetrakis(4-N-trimethylaminobenzyl)porphyrin (TAPP) and to form 2:1 inclusion complexes has been studied by absorption and fluorescence spectroscopy. The formation constants are calculated, respectively, by fluorimetry, from which the inclusion capacity of different CDs is compared and the inclusion mechanism of charged-β-CD (SBE-β-CD and CM-β-CD) is quite different from that of the parent β-CD. At lower pH, the complexation between TM-β-CD and H2TAPP2+ (the form of the diprotonated TAPP) hampers the continuous protonation of the pyrrole nitrogen of TAPP and the hydrophobic cavity may prefer to bind an apolar neutral porphyrin molecule. 1HNMR data support the inclusion conformation of the porphyrin–cyclodextrin supramolecular system, indicating the interaction of the meso-phenyl groups of TAPP with the cavity of CDs. For this host–guest inclusion model, cyclodextrin being regarded as the protein component, which acts as a carrier enveloping the active site of heme prosthetic group within its hydrophobic environment, provides a protective sheath for the porphyrin, creating artificial analogues of heme-containing proteins. However, for TAPP, encapsulated within this saccharide-coated barrier, its photophysical and photochemical properties changed strongly.  相似文献   

17.
The formation of the inclusion complexes of Ofloxacin with cyclodextrins (CDs) including ??-cyclodextrin (??-CD), and hydroxypropyl-??-cyclodextrin (HP-??-CD) were studied by Fluorescence, UV?CVis absorption spectroscopy and nuclear magnetic resonance spectroscopy (NMR) in solution. Experimental conditions including the concentration of various CDs and media acidity were investigated in detail at room temperature. The results suggested that in different pH solutions, CDs have different inclusive capacity to different forms Ofloxacin. ??-CD was most suitable for inclusion of neutral form and HP-??-CD was suitable for acidic form. The binding constant (K) of the inclusion complex was determined by fluorescence measurement, and the complexation ratio was determined as 1:1 in the concentration range used in this study. A mechanism was proposed to explain the inclusion process based on the experimental NMR data.  相似文献   

18.
The objective of this research was to improve the aqueous solubility, dissolution rate and, consequently, bioavailability of diacerein, along with avoiding its side effect of diarrhea, by complexation with β-cyclodextrin (β-CD) and HP-β-cyclodextrin (HP-β-CD). Phase solubility curve was classified as an AN type for both the CDs, which indicated formation of complex of diacerein with β-CD and HP-β-CD in 1:1 stoichiometry and demonstrating that both CDs are proportionally less effective at higher concentrations. The complexes were prepared by kneading method and were evaluated to study the effect of complexation on aqueous solubility and rate of dissolution in phosphate buffer (pH 6.8). Based on the dissolution profile HP-β-CD was selected for preparing fast disintegrating tablet of diacerein which was compared with marketed formulation (MF-J). The HP-β-CD complex was probed for Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies which evidenced stable complex formation and increase in amorphousness of diacerein in complex. In brief, the characterization studies confirmed the inclusion of diacerein within the non-polar cavity of HP-β-CD. HP-β-CD complex showed improved in vitro drug release profile compared to pure drug and similar to that of marketed formulation respectively.  相似文献   

19.
Host–guest inclusion type association between native β-cyclodextrin and randomly substituted methyl-β-CD and two 2-styrylindolium cationic dyes, e.g. 1,3,3-trimethyl-2-(4-diethylaminostyryl)-3H-indolium iodide (D1) and 1,3,3-trimethyl-2-[4-(N-2-cyanoethyl,N-methyl)-aminostyryl]-3H-indolium iodide (D2), are reported. The described indolium derivatives belong to the rarely investigated class of unsymmetrical polymethines. The complex formation was studied in aqueous buffer solutions with two pH values (7.2 and 3) by means of absorption and steady-state fluorescence spectroscopy. The association equilibrium constant (K), the molar absorptivity and the stoichiometry of the complexes were evaluated using the modified Benesi-Hildebrand approach. The complex stability was affected by the pH of the solution and by the type of CD. The results obtained indicate that D1 forms 1:1 complexes with both β-CD and Me-O-β-CD, whereas D2 does not form stable complexes with Me-O-β-CD and in acidic medium. The fluorescent intensity of D1 in the presence of CDs increases over four times relative to the intensity of the pure dye solutions, presumably via inclusion of the dye into the cyclodextrin cavity due to rigidity of the structure.  相似文献   

20.
以乙基紫(EV)为光谱探针,采用紫外-可见光谱法测定了两种维生素(V)与β-环糊精(β-CD)、羟丙基-β-环糊精(HP-β-CD)和磺丁醚-β-环糊精(SBE-β-CD)的包合特性.结果表明,多种弱相互作用力协同作用于环糊精的包合过程,主-客体间的尺寸匹配影响了包合物的稳定性.包合能力β-CDHP-β-CDSBE-β-CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号