首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unique Bi2Te3 tubes were obtained via a simple solvothermal reaction in the presence of ethylenediaminetetraacetic acid disodium salt. The product was characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Bi2Te3 nanosheets are vertically grown off the tube wall to form Bi2Te3 tubes. A possible formation mechanism is proposed.  相似文献   

2.
We present a detailed magnetic study of iron containing carbon nanotubes (Fe-CNT), which highlights their potential for contactless magnetic heating in hyperthermia cancer treatment. Magnetic field dependent AC inductive heating experiments on Fe-CNT dispersions show a substantial temperature increase of Fe-CNT dispersions in applied AC magnetic fields. DC and AC magnetization studies have been done in order to elucidate the heating mechanism. We observe a different magnetic response of Fe-CNT powder compared to Fe-CNT dispersed in aqueous solution, e.g., ferromagnetic Fe-CNT in powder do not show any hysteresis when being dispersed in liquid. Our data indicate the motion of Fe-CNT in liquid in applied magnetic fields.  相似文献   

3.
In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe3O4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe3O4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-CO) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe3O4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe3O4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe3O4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe3O4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe3O4 hybrids was discussed.  相似文献   

4.
We describe a targeted drug delivery system consisting of two steps: first, intravenous injection and circulation of biocompatible, magnetic nanospheres encapsulated with a drug; and second, focal concentration and release of the drug at the target site utilizing an implanted, magnetizable intraluminal stent or seed. We introduce the system concept, outline the biomedical feasibility, and discuss potential clinical advantages.  相似文献   

5.
《Current Applied Physics》2020,20(2):320-325
A facile method is developed for the fabrication of magnetic iron oxide nanoparticle-hollow mesoporous silica spheres (IONP-HMSs) and explored their potential application in drug delivery. Through the self-assembling process of IONPs and the formation of mesoporous silica shells, the IONP-HMSs with hollow interior cavity were obtained. The cetyltrimethyl ammonium bromide (CTAB) encapsulated IONP-containing spheres served as the template to establish the mesoporous silica shells. Typical anti-cancer drug, doxorubicin hydrochloride (DOX) was applied for drug loading and release process of IONP-HMSs, which demonstrated the IONP-HMSs have a high drug loading efficiency and allow pH-trigged release of DOX in vitro. Moreover, the IONP-HMSs exhibited excellent biocompatibility and enhanced DOX therapeutic efficacy to HeLa cells. Compared with traditional methods, the reported microemulsion-based method for the synthesis of IONP-HMSs enables the formation of hollow-structured nanocomposite without any complex template-removing process, which could pave the way to improving the therapeutic efficacy in drug delivery system.  相似文献   

6.
Electron states in the conduction band of carbon nanotubes are studied in the presence of a constant magnetic field perpendicular to the tube axis within the framework of Hubbard's model. Numerical solutions describing electron density waves corresponding to soliton lattices are obtained. The possibility of control over the electron lattice parameters with the help of a constant magnetic field is established. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 17–23, December, 2008.  相似文献   

7.
Multiwall carbon nanotubes exhibit oscillations of magnetoresistance with the period Φ0=hc/2e [A. Bachtold, C. Strunk, J.-P. Salvetat, et al., Nature 397, 673 (1999)]. This effect is analogous to the Sharvin effect for a normal metal [D. Yu. Sharvin and Yu. V. Sharvin, Pis’ma Zh. Éksp. Teor. Fiz. 34, 285 (1981)]. It is shown that, along with the magnetoresistance peaks corresponding to the flux values that are multiples of Φ 0, additional peaks with a period three times shorter can be observed in carbon nanotubes.  相似文献   

8.
The problem of ultra-short optical pulse behavior in a system of carbon nanotubes with an applied magnetic field parallel to the nanotube axis was considered. The electromagnetic field was explored using the Maxwell equations. The electronic system of the carbon nanotubes was a quantum system and was mechanically investigated for the case of low temperatures. The distributional pattern of the ultra short pulses and their collision were established by means of numerical modeling.  相似文献   

9.
Commercially available multiwall carbon nanotubes (MWCNTs) have been functionalized with poly(diallyl dimethylammonium) chloride (PDDA), a nitrogen containing polyelectrolyte by a simple on-off ultrasonication method. The results obtained from Raman and X-ray photoelectron spectroscopy (XPS) studies confirm the functionalization of MWCNTs with PDDA. An up- shift in the positions of C1s XPS peak and a down-shift in the positions of the N1s XPS peak, has been observed along with an up-shift in the G-peak position in the Raman spectra, which suggest the occurrence of inter-molecular charge transfer from carbon atoms in MWCNTs to N+ centres in PDDA. The preliminary linear sweep voltammetry (LSV) results show good electrocatalytic activity of MWCNTs functionalized with nitrogen containing polyelectrolyte, which is comparable to the results with platinum based electrodes. Thus, MWCNTs non-covalently functionalized with a nitrogen containing polyelectrolyte (PDDA) by a simple on-off ultrasonication method could be advantageous for developing efficient metal-free electrocatalysts for the oxygen reduction reaction (ORR).  相似文献   

10.
We report magnetic field spectroscopy measurements in carbon nanotube quantum dots exhibiting fourfold shell structure in the energy level spectrum. The magnetic field induces a large splitting between the two orbital states of each shell, demonstrating their opposite magnetic moment and determining transitions in the spin and orbital configuration of the quantum dot ground state. We use inelastic cotunneling spectroscopy to accurately resolve the spin and orbital contributions to the magnetic moment. A small coupling is found between orbitals with opposite magnetic moment leading to anticrossing behavior at zero field.  相似文献   

11.
A problem of ultra short optical pulses behavior in a system of carbon nanotubes with applied magnetic field parallel to the nanotube axis was considered. The electromagnetic field was explored under the Maxwell equations. And the electronic system of the carbon nanotubes was quantum and mechanically investigated in the case of low temperatures. The distributional pattern of the ultra short pulses and their collision were established by means of numerical modeling.  相似文献   

12.
13.
Uniform Cu2O hollow spheres fabricated by single-crystalline particles (smaller than 20 nm) are facile synthesized in ethylene glycol (EG) solution by a simple solvothermal route without using pre-fabricated templates and reductive agents. EG in this protocol is not only used as a solvent, complexing agent, and reducing agent, but also served as a structure-directing agent for the formation of hollow structure. By control of reaction conditions, such as reaction time, temperature, and the anions, the morphology and structure of the hollow spheres can be tuned. A coordination adsorption and oriented attachment and Ostwald ripening mechanism is proposed for explaining the formation process of hollow Cu2O spheres in EG solution; and importantly, the hollow Cu2O spheres exhibit an excellent property for the electro-catalytic oxidization of ascorbic acid in acetic acid buffer solution. Moreover, the hollow spherical Cu2O particles could be potentially applied in catalysis, sensor, and as model for fundamental research.  相似文献   

14.
In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.  相似文献   

15.
Mechanisms proposed in the literature are compared with a current scenario for the formation of single-wall carbon nanotubes in the laser-ablation process that is based on our spectral emission and laser-induced fluorescence measurements. It is suggested that the carbon which serves as feedstock for nanotube formation not only comes from the direct ablation of the target, but also from carbon particles suspended in the reaction zone. Fullerenes formed in the reaction zone may be photo-dissociated into C2 and other low molecular weight species, and also may serve as feedstock for nanotube growth. Confinement of the nanotubes in the reaction zone within the laser beam allows the nanotubes to be ‘purified’ and annealed during the formation process by laser heating. Received: 2 November 2000 / Accepted: 3 November 2000 / Published online: 23 March 2001  相似文献   

16.
Superparamagnetic magnetite microspheres with a hydrophobic surface were successfully prepared through a simple solvothermal method based on hydrolysis of iron-oleate complex in diphenyl ether in the presence of oleic acid as the ligands. The microspheres size and size distribution were analyzed by a laser diffraction particle size analyzing method using ZETASIZER. The morphology and crystalline structure of the products were characterized using transmitting electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), and the magnetic property was studied by a Quantum Design MPMS SQUID. TEM and SEM images showed that as-prepared spherical nanostructures are of about 140 nm in sizes, which self-assembled by many 10 nm primary magnetic nanoparticles. The XRD analysis revealed that the magnetic microspheres are composed of magnetite. The magnetic measurements demonstrated that the spherical nanostructures are superparamagnetic at room temperature with no magnetic remanence and coercive force. In addition, the microspheres can be well dispersed in various non-polar solvents due to their surfaces capped of hydrophobic surfactants in situ.  相似文献   

17.
On the basis of the Hubbard model for electrons in the conduction band of carbon nanotubes, the numerical solutions describing soliton lattices are obtained, and the possibility of controlling the lattice parameters using a dc magnetic field is established.  相似文献   

18.
We have studied the electronic structure of the carbon nanotubes which include Fe atomic wire with using the density functional theory. As the stable geometries, we obtained the straight and zigzag wires, which have ferromagnetic and antiferromagnetic alignments, respectively. The antiferromagnets consists of the two ferromagnetic dimers which couple in antiparallel alignment. We presents the band dispersions and the density of states for the magnetic nanotubes. The electronic structure at the Fermi level consists of the Fe 3d and C 2pπ states, which shows a strong hybridization between them.  相似文献   

19.
A nanosuspension of magnetically tagged metronidazole was developed by the solvent displacement method coupled with ultrasonication and was evaluated for its physicochemical properties. The drug release from metronidazole magnetic nanosuspension at pH 1.2 and 7.0 shows maximum correlation coefficient for zero order and Higuchi model, respectively. The anthelmintic activity of the formulated metronidazole magnetic nanosuspension was evaluated on Indian earthworms (Pheretima poi). Metronidazole magnetic nanosuspension at a dose of 10 and 50 mg/ml shortened by 31% and 34%, respectively, the mean time to death of the earthworms when compared against a non-magnetic metronidazole suspension. Thus, the developed metronidazole magnetic nanosuspension showed potent, controlled and targeted drug action and might be a good therapeutic avenue in combating infectious GI disorders.  相似文献   

20.
The uptake of carbon nanotubes (CNTs) by mammalian cells and their distribution within cells is being widely studied in recent years due to their increasing use for biomedical purposes. The two main imaging techniques used are confocal fluorescence microscopy and transmission electron microscopy (TEM). The former, however, requires labeling of the CNTs with fluorescent dyes, while the latter is a work-intensive technique that is unsuitable for in situ bio-imaging. Raman spectroscopy, on the other hand, presents a direct, straightforward and label-free alternative. Confocal Raman microscopy can be used to image the CNTs inside cells, exploiting the strong Raman signal connected to different vibrational modes of the nanotubes. In addition, cellular components, such as the endoplasmic reticulum and the nucleus, can be mapped. We first validate our method by showing that only when using the CNTs' G band for intracellular mapping accurate results can be obtained, as mapping of the radial breathing mode (RBM) only shows a small fraction of CNTs. We then take a closer look at the exact localization of the nanotubes inside cells after folate receptor-mediated endocytosis and show that, after 8-10 h incubation, the majority of CNTs are localized around the nucleus. In summary, Raman imaging has enormous potential for imaging CNTs inside cells, which is yet to be fully realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号