首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes the synthesis of silver nanoparticles (AgNPs) using aqueous silk fibroin (SF) solution obtained from Bombyx mori silk under gamma radiation environment. The obtained AgNPs were characterized using UV–visible (UV–Vis) spectroscopy, X-ray diffraction (XRD) measurements, dynamic light scattering experiment (DLS) and transmission electron microscope (TEM) images. The UV–Vis absorption spectra of the samples confirmed the formation of AgNPs by showing surface plasmon resonance (SPR) band in the range of (= 428–435?nm. The XRD study revealed metal silver with the face-centered cubic (FCC) crystal structure. DLS measurements showed the dose-dependent average size of the AgNPs. TEM images showed formed AgNPs are nearly spherical in shape with smooth edges. From this study, it was found that the increasing radiation dose increases the rate of reduction and decreases the particle size. The size of the AgNPs can be tuned by controlling the radiation dose.  相似文献   

2.
Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 ± 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO2 nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO2 covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.  相似文献   

3.
Recently, ionic liquids have been used as dispersing agents for silver nanoparticle (AgNP) preparation. In this paper, we have shown a simple method to prepare AgNP in aqueous media using an ionic liquid called hexadecylpyridinium salicylate (HDPSal) as dispersing agent. The dispersions were produced by the chemical reduction of silver ions in aqueous media with different concentrations of HDPSal and tetrabutylammonium borohydride as reducing agent. The UV–Visible electronic spectra showed the characteristic plasmonic resonance band around 420 nm, confirming the formation of AgNPs. The TEM images confirmed the formation of spherical particles with diameters lower than 10 nm. The charge of these particles was determined by Zeta potential and they were around +50 mV, indicating that the HDP cations are surrounding the AgNPs, avoiding their agglomeration. Most of the dispersions remained stable for at least 1 month. Microbiological assays showed that the combination of AgNP with HDPSal results in wider range of antimicrobial effect.  相似文献   

4.
The silver nanoparticles (AgNPs) were synthesized in an alkalic aqueous solution of silver nitrate (AgNO3)/carboxymethylated chitosan (CMCTS) with ultraviolet (UV) light irradiation. CMCTS, a water-soluble and biocompatible chitosan derivative, served simultaneously as a reducing agent for silver cation and a stabilizing agent for AgNPs in this method. UV–vis spectra and transmission electron microscopy (TEM) images analyses showed that the pH of AgNO3/CMCTS aqueous solutions, the concentrations of AgNO3 and CMCTS can affect on the size, amount of synthesized AgNPs. Further by polarized optical microscopy it was found that the CMCTS with a high molecular weight leads to a branch-like AgNPs/CMCTS composite morphology. The diameter range of the AgNPs was 2–8 nm and they can be dispersed stably in the alkalic CMCTS solution for more than 6 months. XRD pattern indicated that the AgNPs has cubic crystal structure. The spectra of laser photolysis of AgNO3/CMCTS aqueous solutions identified the early reduction processes of silver cations (Ag+) by hydrated electron formed by photoionization of CMCTS. The rate constant of corresponding reduction reaction was 5.0 × 109 M−1 s−1.  相似文献   

5.
The aim of this study to focused on bioinspired synthesis of silver nanoparticles (AgNPs) as a viable alternative to eradicate the existing physicochemical processes. In this context, the bioinspired AgNPs were synthesized using leaf extract of M. indica. Optimization of the experimental conditions for the rapid and high yield of AgNPs in minimum investment of time and expense have been carried out along with their antibacterial efficacy evaluated. For this reason, the variation of parameters like the concentration of the silver precursors, reducing agent, time, pH, and temperature of synthesis were realized. Synthesized AgNPs were characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) techniques. UV-Visible spectra gave surface plasmon resonance (SPR) at 440 nm for AgNPs. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques were further confirmed the synthesis and crystalline nature of AgNPs respectively. Transmission electron microscopy (TEM) observed spherical shapes of synthesized AgNPs within range 5~20 nm. The results of the current study indicate that optimization process play a pivotal role in the AgNPs synthesis and biogenic synthesized AgNPs might be used against bacterial pathogens.  相似文献   

6.
Partially oxidized spherical silver nanoparticles (AgNPs) of different size are prepared by pulsed laser ablation in water and directly conjugated to protein S-ovalbumin for the first time and characterized by various optical techniques. UV–Visible spectrum of AgNPs showed localized surface plasmon resonance (LSPR) peak at 396 nm which red shift after protein addition. Further the increased concentration of AgNPs resulted a decrease in intensity and broadening of S-ovalbumin peak (278 nm), which can be related to the formation of protein NPs complex caused by the partial adsorption of S-ovalbumin on the surface of AgNPs. The red shift in LSPR peak of AgNPs after mixing with S-ovalbumin and decrease in protein-characteristic peak with increased silver loading confirmed the formation of protein–AgNPs bioconjugates. The effect of laser fluence on the size of AgNPs and nanoparticle–protein conjugation in the size range 5–38 nm is systematically studied. Raman spectra reveal broken disulphide bonds in the conjugated protein and formation of Ag–S bonds on the nanoparticle surface. Fluorescence spectroscopy showed quenching in fluorescence emission intensity of tryptophan residue of S-ovalbumin due to energy transfer from tryptophan moieties of albumin to AgNPs. Besides this, small blue shift in emission peak is also noticed in presence of AgNPs, which might be due to complex formation between protein and nanoparticles. The binding constant (K) and the number of binding sites (n) between AgNPs and S-ovalbumin have been found to be 0.006 M?1 and 7.11, respectively.  相似文献   

7.
Silver nanoparticles (AgNPs) have been deposited on silicon and glass surfaces via a supercritical carbon dioxide (sc-CO2) synthesis route for application in surface-enhanced Raman spectroscopy (SERS). Arrhenius plots revealed that nucleation and growth processes in this system depend on both temperature and surface chemistry. Results also demonstrated that temperature and surface chemistry could be varied to control nanoparticle properties, such as the mean nanoparticle size, density, and surface coverage, providing two useful variables for manipulating the properties of AgNPs deposited on surfaces in this system. These data also provide scientific insight into the underlying mechanisms governing heterogeneous AgNP deposition on a substrate in a sc-CO2 system in addition to engineering insight into the variables that can be used to manipulate AgNP characteristics. The mean particle size could be tuned over the range 20–200 nm, the interparticle distance could be tuned over the range 70 nm–1 μm, and the surface coverage could be tuned over the range 0.035–0.58. Products were analyzed by scanning electron microscopy with image analysis, transmission electron microscopy, X-ray diffraction, and SERS. The silver nanoparticle-coated substrates were successfully applied in SERS, detecting the model analyte Rhodamine 6G at a concentration of 1 μM, a three orders of magnitude improvement over SERS surfaces previously fabricated in sc-CO2 systems. Such surfaces can find use in trace concentration analyte detection in biomedical, chemical, and environmental applications.  相似文献   

8.
Development of new generation bionanotextiles is an important growing field, and they have found applications as wound dressings, bandages, tissue scaffolds, etc. In this study, silver nanoparticle (AgNP) containing silk-based bionanotextiles were fabricated by electrospinning, and processing parameters were optimized and discussed in detail. AgNPs were in situ synthesized within fibroin nanofibers by UV reduction of silver ions to metallic silver. The influence of post-treatments via methanol treatment and glutaraldehyde (GA) vapor exhibited changes in the secondary structure of silk. Methanol treatment increased the tensile properties of fibers due to supported crystalline silk structure, while GA vapor promoted amorphous secondary structure. AgNP containing silk fibroin bionanotextiles had strong antibacterial activity against gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa.  相似文献   

9.
Silver nanoparticles (NPs) were photogenerated in situ in crosslinked poly(ester-co-styrene) resins (self-standing films and monoliths) by irradiating the samples with UV light. Addition of the silver salt solution did not interfere in the resin curing process and silver reduction was not detected during sample crosslinking. The samples were characterized by absorption spectroscopy and transmission electron microscopy. The initially broad and asymmetric surface plasmon resonance band was narrowed and blue-shifted as the exposure time to UV light was increased. Samples illuminated up to 120 min have an average particle size near 9.0 nm; a decrease to ∼5.0 nm was observed for longer exposure times up to 790 min. The asymmetric surface plasmon resonance band was due to particle aggregation; higher irradiation times led to a uniform particle distribution within the polymer matrix.  相似文献   

10.
Poly (vinyl alcohol)/poly (ethylene oxide) (PEO/PVA) blends were modified by gamma irradiation in the presence of acrylic acid (AAc) monomer. The modified PVA/PEO blends were then complexed with silver nitrate salt and lithium trifluoromethanesulfonate. Transmission electron microscopy was used to determine the distribution as well as the particle size of the silver nanoparticles (NP) formed in the matrix. The UV–vis absorbance spectra of the prepared grafted nanocomposite membranes confirmed the formation of Ag NP based on their surface plasmon band at 438?nm. The electrical properties of the blended electrolyte polymer films were characterized and discussed.  相似文献   

11.
Fluorescent silver nanoparticles via exploding wire technique   总被引:2,自引:0,他引:2  
Aqueous solution containing spherical silver nanoparticles of 20–80 nm size have been generated using a newly developed novel electro-exploding wire (EEW) technique where thin silver wires have been exploded in double distilled water. Structural properties of the resulted nanoparticles have been studied by means of X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The absorption spectrum of the aqueous solution of silver nanoparticles showed the appearance of a broad surface plasmon resonance (SPR) peak centered at a wavelength of 390 nm. The theoretically generated SPR peak seems to be in good agreement with the experimental one. Strong green fluorescence emission was observed from the water-suspended silver nanoparticles excited with light of wavelengths 340, 360 and 390 nm. The fluorescence of silver nanoparticles could be due to the excitation of the surface plasmon coherent electronic motion with the small size effect and the surface effect considerations  相似文献   

12.
The present study describes the green method for the preparation of chitosan loaded with silver nanoparticles (CS‐AgNPs) in the presence of 3 different extracted essential oils. The essential oils play dual roles as reductant and capping agents. The reducing power and DPPH (2,2‐diphenyl‐1‐picrylhydrazyl) assay for the 3 essential oils—Thymus syriacus (T), wild mint (M), and rosemary (R)—have been reported. The preparation of CS‐AgNPs was performed by 2 steps. The 3 previously extracted essential oils have been used as reducing and capping agent in the first step, while in the second step, silver nanoparticles were integrated in chitosan. The integration of AgNPs in the structure of chitosan was confirmed by ultraviolet‐visible, Fourier transform infrared spectroscopy, scanning electron microscopy techniques, and energy dispersive X‐ray. Surface plasmon resonance confirmed the formation of CS‐AgNPs with maximum absorbance at λmax between 405 ‐ 410 and 410 ‐ 430 nm for colloidal and films of CS‐AgNPs, respectively. The intensity of bands at 3408 cm?1 in the fourier transform infrared spectroscopy measurements was decreased substantially and shifted slightly to lower frequency (?υ = 43 cm?1). Scanning electron microscopy shows a spherical morphology of AgNPs with size of 62 nm for both colloidal and film samples, and energy dispersive X‐ray analysis shows peaks confirming AgNPs formation.  相似文献   

13.
Understanding the colloidal stability of nanoparticles (NPs) plays a key role in phenomenological interpretation of toxicological experiments, particularly if single NPs or their aggregates or agglomerates determine the dominant experimental result. This report examines a variety of instrumental techniques for surveying the colloidal stability of aqueous suspensions of silver nanoparticles (AgNPs), including atomic force microscopy, dynamic light scattering, and colorimetry. It was found that colorimetry can adequately determine the concentration of single AgNPs that remained in solution if morphological information about agglomerates is not required. The colloidal stability of AgNPs with various surface capping agents and in various solvents ranging from cell culture media to different electrolytes of several concentrations, and in different pH conditions was determined. It was found that biocompatible bulky capping agents, such as bovine serum albumin or starch, that provided steric colloidal stabilization, as opposed to purely electrostatic stabilization such as with citrate AgNPs, provided better retention of single AgNPs in solution over a variety of conditions for up to 64 h of observation.  相似文献   

14.
Surface‐enhanced Raman spectroscopy (SERS) is a unique technique to study submembrane hemoglobin (Hbsm) in erythrocytes. We report the detailed design of SERS experiments on living erythrocytes to estimate dependence of the enhancemen t factor for main Raman bands of Hbsm on silver nanoparticle (AgNP) properties. We demonstrate that the enhancement factor for ν 4/A1g, ν 10/B1g and A2g Raman bands of Hbsm varies from 105 to 107 under proposed experimental conditions with 473 nm laser excitation. For the first time we show that the enhancement of Raman scattering increases with the increase in the relative amount of small NPs in colloids, with the decrease in AgNP size and with plasmon resonance shift to the shorter wavelength region. Obtained results can be explained by the ability of smaller AgNPs to get deeper into nano‐invaginations of the plasma membrane than larger AgNPs. This shortens the distance between small AgNPs and Hbsm and, consequently, leads to the higher enhancement of Raman scattering of Hbsm. The enhancement of higher wavenumber bands ν 10/B1g and A2g is more sensitive to AgNPs’ size and the relative amount of small AgNPs than the enhancement of the lower wavenumber band ν 4/A1g. This can be used for AgNP‐controlled enhancement of the desired Raman bands and should be taken into account in biomedical SERS experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall applications. Despite their wide use, detailed toxicokinetic data and information on their action mechanisms in vivo are still scarce. One important obstacle is their fate and transformation patterns in biological environments where AgNPs get a “new face” after interaction with biomolecules, particularly proteins. The impact of protein corona on AgNP effects in vivo is eludicated. The in vivo effects of AgNPs prepared with two different protein coronas, albumin, and metallothionein, with polymer‐coated AgNPs are compared in male and female Wistar rats after intravenous administration. The results demonstrate that the character of the protein coronas on the AgNP surface affects not only distribution, but also oxidative stress response and genotoxicity in tissues of rat exposed to AgNPs. Additionally, sex‐related effects are observed. By emphasizing the importance of protein corona formation and sex‐related response, the obtained data support a reliable evidence base needed for assessing the health risks of the steadily increasing human exposure to AgNPs.  相似文献   

16.
Yang  Cuiping  He  Xiangfeng  Chen  Junsong  Chen  Dengyu  Liu  Yunjing  Xiong  Fei  Shi  Fangfang  Dou  Jun  Gu  Ning 《Journal of nanoparticle research》2013,15(8):1-13
We experimentally and theoretically characterize back-scattering and extinction of Ag nanoparticle (AgNP) arrays on both Si wafer substrates and optically-thick Ag substrates with and without organic poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction thin film coatings. A strong red-shift in back-scattered light wavelength occurs from AgNP arrays on Si as a function of increasing mean nanoparticle diameter (ranging from 30 to 90 nm). Back-scattering from the AgNP array is notably quenched in the wavelength range of strong P3HT absorption when the organic layer is applied. However, back-scattering is enhanced to a degree relative to the uncoated AgNP array on Si at wavelengths greater than the absorption band edge of P3HT. For comparison, the optical properties of AgNPs on an optically-thick Ag substrate are reported with and without P3HT:PCBM thin film coatings. On the reflective Ag substrates, a significant enhancement (by a factor of 7.5) and red-shift of back-scattered light occurred upon coating of the AgNPs with the P3HT:PCBM layer. Additionally, red-edge extinction was enhanced in the P3HT:PCBM layer with the presence of the AgNPs compared to the planar case. Theoretical electromagnetic simulations were carried out to help validate and explain the scattering and extinction changes observed in experiment. Both increasing nanoparticle size and an increasing degree of contact with the Si substrate (i.e., effective index of the nanoparticle environment) are shown to play a role in increasing back- and forward-scattering intensity and wavelength, and in increasing absorption enhancements in both the organic and Si layers. AgNPs placed at the P3HT:PCBM/Si interface give rise to absorption increases in P3HT of up to 18 %, and only enhance Si absorption at wavelengths longer than the absorption band edge of P3HT (by almost 90 % in the 660–1,200 nm wavelength range). These results provide insight into how metal nanoparticles placed near an organic/inorganic interface can be employed for light management in tandem or hybrid organic/inorganic thin-film semiconductor configurations for solar energy harvesting applications or light detection applications.  相似文献   

17.
The key findings in the synthesis and transformation of silver nanoparticles with pentagonal symmetries arising from regular multiple twinning are reported, researched in the last 5 years. In a one‐stage photochemical synthesis of silver decahedral (pentagonal bipyramid, J13 solid) nanoparticles (AgDeNPs), oxidative etching by hydrogen peroxide is implemented to achieve complete conversion of the small silver platelet precursor NPs. The concentration of hydrogen peroxide is found to be optimal at 0.2 m . Such high peroxide concentration can be rationalized by its slow reactivity in a red‐ox equilibrium with borohydride and citrate. We have also adapted light‐emitting diodes (LEDs) as a light source and documented optimal exposure time, LED power, and wavelength range for convenient laboratory synthesis of high‐purity size‐selected AgDeNPs. In the absence of platelet impurities, AgDeNPs produce by the new‐generation procedure can be conveniently re‐grown into larger sizes using silver ions as a precursor. Thermal regrowth of new‐generation AgDeNPs into pentagonal silver nanorods (AgPRNPs, J15 solid) can be reliably accomplished with the precise variation in rod length (by varying amounts of added silver) and width (by using different seed AgDeNPs). With the reported reproducible synthetic protocols that can be readily implemented in any chemistry laboratory, AgDeNPs and AgPRNPs should serve as a versatile plasmonic platform with a precisely tunable surface plasmon resonance (SPR) from ca. 430 nm (rounded AgDeNPs) to 1100+ nm (longitudinal SPR of longer AgPRNPs). The plasmonic platform based on the reported AgNPs with pentagonal symmetries should be practical for a diverse range of applications, especially plasmonic sensing and surface‐enhanced Raman spectroscopy.  相似文献   

18.
The molecular dynamics simulation (MD) was carried out to investigate the mechanical properties of pristine polymethylmethacrylate (PMMA) and the composites of PMMA mixed with the silver nanoparticles (PMMA/AgNPs) at two AgNP weight fractions at 0.60 and 1.77 wt%. From the stress–strain profiles by the tensile process, it can be seen that the improvement on Young’s modulus is insignificant at these lower AgNP fractions. The tensile strength of pristine PMMA can be slightly improved by the embedded AgNPs at 1.77 wt%, because the local density and strength of PMMA in the vicinity of AgNP surface within about 8.2 Å are improved. For the temperature effect on the mechanical properties of pristine PMMA and PMMA/AgNP composite, the Young’s moduli and strength of pristine PMMA and PMMA/AgNP composite significantly decrease at temperatures of 450 and 550 K, which are close to the predicted melting temperature of pristine PMMA about 460 K. At these temperatures, the PMMA materials become more ductile and the AgNPs within the PMMA matrix display higher mobility than those at 300 K. When the tensile strain increases, the AgNPs tend to get closer and the fracture appears at the PMMA part, leading to the close values of Young’s modulus and ultimate strength for pristine PMMA and PMMA/AgNP composite at 450 and 550 K.
Graphical abstract Stress–strain curves of pristine PMMA, polymethylmethacrylate (PMMA)/silver nanoparticles (AgNP) (0.60%), and PMMA/AgNP (1.77%). Inset images: local shear strain of pristine PMMA (red) and PMMA/AgNP (1.77%) (green).
  相似文献   

19.
Polysulfone?silver composite nanoparticles have been prepared by combining polymer nanoprecipitation and redox synthesis of silver, in the presence of a glucose-modified cyclosiloxane as stabilizing agent. Based on previous kinetic investigations and on model reactions, we concluded that the reducing agent in this case is the tetrahydrofuran (THF) used as solvent for polysulfone. Dynamic light scattering measurements on the obtained polymer-silver composite particles indicated particle average diameter of 176 nm with a polydispersity index of 0.25. The UV–vis spectrum exhibited the silver plasmon resonance. By different microscopic methods (atomic force microscopy—AFM, high resolution transmission electron microscopy—HRTEM, and scanning electron microscopy—SEM), larger polymer particles coated with silver nanoprticles were observed. The Energy Dispersive X-Ray analysis—EDX; confirmed the presence of Ag on the surface of the particles, while the selected area electron diffraction showed single crystalline silver nanospheres with face-centered cubic structure.  相似文献   

20.
Formation and aggregation of photolytic silver nanoparticles at the surface of silver salt of carboxymethylcellulose films (CMCAg films) have been investigated. Detailed X-ray photoelectron spectroscopy (XPS) study and field emission type scanning electron microscopy (FE-SEM) observation have been carried out to characterize silver nanoparticles at the film surface. When the CMCAg films were irradiated with UV light in wet air at room temperature for 30–60 min, silver nanoparticles of ca. 10 nm size were formed at the irradiated surface. According to the FE-SEM observation, the growth of the particle diameter and aggregation of nanoparticles took place after prolonged irradiation, and finally, the irradiated side of the film surface was densely covered with the silver nanoparticles of ca. 35 nm size. Chemical composition analysis by the XPS measurements has confirmed the increase in the atomic concentration of silver with irradiation time. It is suggested that silver atoms and clusters can move in the film and precipitate at the irradiated surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号