首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ZnO nanoparticles were synthesized by the continuous spray pyrolysis technique (CoSP) and the effect of applied voltage across the spray nozzle and an annular ground electrode during spray has been studied. X-ray diffraction and transmission electron microscopy studies showed that the product has (hexagonal) wurtzite structure with the average particle size decreasing from 18.5?nm to 12.9?nm in the presence of a high DC voltage (1?kV). The higher value of the absorption peak for the nanoparticles synthesized without voltage is supportive of this behavior. The films deposited by spin coating using these nanoparticles can be used for a variety of applications, particularly as photoelectrodes for dye-sensitized solar cells.  相似文献   

2.
ZnO nanoparticles and ZnO encapsulated with polyethylene glycol (PEG) was synthesized using zinc acetate as a precursor at low temperature and characterized by different techniques. The influence of the types of solvent, synthesis parameters, and PEG encapsulation on the crystallization, the surface morphology, and the luminescent properties of ZnO nanoparticles prepared by the sol–gel process were investigated. The influence of different addition molar masses of the PEG during the synthesis on the ZnO emission peaks was systematically monitored. The crystallinity, the surface morphology, and the photoluminescence (PL) properties of ZnO depended highly on the synthesis process and PEG encapsulation. X-ray diffraction (XRD) spectra of ZnO nanoparticles show that all the peaks corresponding to the various planes of wurtzite ZnO indicate the formation of a single phase. The absorption edges of these ZnO nanoparticles are shifted by additions of the PEG polymer. The photoluminescence (PL) characterization of the ZnO nanostructures exhibited a broad emission in the visible range with maximum peak at 450 and/or 560 nm.  相似文献   

3.
Today, plastic waste has been highlighted as one of the greatest threats to the environment. These environmental concerns and the increased necessity for safe food packaging have inspired scientists to focus on the development of active biodegradable materials. Herein, a novel poly(vinyl alcohol)/pluronic/ZnO nanocomposite film (PVA/PLUR/ZnO) is introduced as an active packaging material with enhanced antimicrobial activity. Gamma irradiation is used as a “green” route to prepare ZnO nanoparticles via a polymer pyrolysis method. The as-prepared ecofriendly ZnO nanoparticles are characterized and incorporated into the PVA/PLUR matrix in different concentrations. Transmission electron microscopy and dynamic light scattering measurements prove that ZnO nanoparticles have a mean particle size of 30 nm with a spherical-like morphology. Morphological and structural characterization confirm the successful incorporation of ZnO into the PVA/PLUR matrix, which in turn enhances the thermal and barrier properties of PVA/PLUR/ZnO nanocomposite films. On the other hand, the opacity of blends is increased. The PVA/PLUR/ZnO composites exhibit broad-spectrum antimicrobial activity against Gram-positive, Gram-negative bacterial pathogens, and fungi, and the activity increases with increasing concentrations of ZnO nanoparticles. These results introduce PVA/PLUR/ZnO films as effective antimicrobial materials for active food-packaging applications.  相似文献   

4.
Zinc oxide (ZnO) and lead sulphide (PbS) nanoparticles separately synthesized by a precipitation method were combined by an ex situ route to prepare ZnO-PbS nanocomposites with different molar ratios of ZnO and PbS. The structure and morphology of the ZnO, PbS and ZnO-PbS samples were analyzed with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A UV-vis spectrophotometer was used to collect the absorption and 325 nm He-Cd and 488 nm Ar lasers were used to collect the photoluminescence data from the samples. ZnO nanoparticles showed a broad and stable emission peak at ∼570 nm, while a strongly quantum confined emission from PbS nanoparticles was detected at ∼1344-1486 nm. The ZnO-PbS nanocomposites exhibited dual emission in the visible and near-infrared (NIR) regions that is associated with defects and recombination of excitonic centres in the ZnO and PbS nanoparticles, respectively. The PL intensity of the visible emission from the ZnO-PbS nanocomposite was shown to increase when the ZnO to PbS molar ratio was 5:1 and the emission was almost quenched at molar ratios of 1:1 and 1:5. For different molar ratios of ZnO to PbS, the PL intensity of the NIR emission from the ZnO-PbS nanocomposites was more intense than that of PbS nanoparticles.  相似文献   

5.
方合  王顺利  李立群  李培刚  刘爱萍  唐为华 《物理学报》2011,60(9):96102-096102
利用532 nm脉冲激光对沉浸在去离子水及十二烷基硫酸钠(SDS)水溶液中的金属锌靶进行液相激光烧蚀,合成了ZnO纳米颗粒和Zn/ZnO核壳结构的纳米粒子. 应用X射线衍射仪,透射电子显微镜,紫外可见光分光光度计和荧光光度计表征产物的微观结构和光学性能,并探讨其形成机理. 结果表明:在去离子水中分别烧蚀2 h和4 h生成的ZnO纳米粒子的平均粒径分别为43 nm和19 nm. 激光的长时间作用可以使纳米粒子粒径减小. 在0.005 mol/L的SDS水溶液中合成了Zn/ZnO核壳结构的纳米粒子,这是由于S 关键词: 脉冲激光烧蚀 ZnO纳米粒子 核壳结构 光致发光  相似文献   

6.
Monodispersive ZnO nanoparticles each with a hexagonal wurtzite structure are facilely prepared by the hightemperature organic phase method.The UV-visible absorption peak of ZnO nanoparticles presents an obvious blue-shift from 385 nm of bulk ZnO to 369 nm.Both the real part and the image part of the complex permittivity of ZnO nanoparticles from 0.1 GHz to 10 GHz linearly decrease without obvious resonance peak appearing.The real parts of intrinsic permittivity of ZnO nanoparticles are about 5.7 and 5.0 at 0.1 GHz and 10 GHz respectively,and show an obvious size-dependent behavior.The dielectric loss angle tangent(tan 5) of ZnO nanoparticles with a different weight ratio shows a different decreasing law with the increase of frequency.  相似文献   

7.
Multi-walled carbon nanotubes (MWNTs)/Cu-doped ZnO composite powders were prepared by co-precipitation method, and were characterized by X-ray diffraction, electron microscopy, fluorescence spectrum, and ultraviolet spectrum. Experimental results show that the MWNTs can be modified by Cu-doped ZnO nanoparticles with hexagonal wurtzite structure after annealed at 450?°C, and the nanoparticle size is about 15?nm. Two ultraviolet (UV) peaks and a green band centered at about 510?nm are observed in the fluorescence spectrum of MWNTs/Cu-doped ZnO composite powder annealed at 450?°C. Furthermore, MWNTs and Cu doping significantly improve the UV absorption ability of ZnO.  相似文献   

8.
A novel synthesis method is presented for the preparation of nanosized-semiconductor zinc oxide–sulphide (ZnO/ZnS) core–shell nanocomposites, both formed sequentially from a single-source solid precursor. ZnO nanocrystals were synthesized by a simple co-precipitation method and ZnO/ZnS core–shell nanocomposites were successfully fabricated by sulfidation of ZnO nanocrystals via a facile chemical synthesis at room temperature. The as-obtained samples were characterized by X-ray diffraction and transmission electron microscopy. The results showed that the pure ZnO nanocrystals were hexagonal wurtzite crystal structures and the ZnS nanoparticles were sphalerite structure with the size of about 10 nm grown on the surface of the ZnO nanocrystals. Optical properties measured reveal that ZnO/ZnS core–shell nanocomposites have integrated the photoluminescent effect of ZnO and ZnS. Based on the results of the experiments, a possible formation mechanism of ZnO/ZnS core–shell nanocomposites was also suggested. This treatment is suggested to improve various properties of optoelectronically valuable ZnO/ZnS nanocomposites. These nanosized semiconductor nanocomposites can form a new class of luminescent materials for various applications.  相似文献   

9.
In this work patterned ZnO films were prepared at room-temperature by deposition of ∼5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation (λ = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.  相似文献   

10.
Nanosheet-based microspheres of ZnO with hierarchical structures, hollow prism, and coralline-like ZnO nanostructures were successfully prepared by ultrasonic irradiation in acidic ionic liquids (AILs). The hollow spherical is made up of many thin petals, the thickness of which is only about 90 nm. In the presence of AIL2, the one prepared at a frequency of 40 kHz is a mixture of nanofibers with diameters ranging from less than 30 nm to about 100 nm. ZnO nanostructure (with AIL1) reveals lozenge-shape hollow prism structures. The products were hollow prism structure covered with some nanometric-size nanoparticles. The average size of the nanoparticles is in the range of 40?C80 nm. It is found that the ultrasonic irradiation time, ultrasonic frequency, and the AILs influence the growth mechanism and optical properties of ZnO nanostructures. Producing Zno nanostructures by different traditional methods (e.g., hydrothermal method) requires basic media. These methods are not economical and environmentally friendly in many industrial processes. In so doing, a critical problem has been the point that, normally, a high concentration of base causes reactor metal corrosion. This is a simple and low-cost method, which can be expected to be applied in industry in the future. Also, importantly, the structures synthesized in this experiment can indicate a new way to construct nanodevices by self-organization in one step.  相似文献   

11.
Highly luminescent silica-coated ZnO nanoparticles dispersed in an aqueous medium were synthesized using the sol-gel process. The samples prepared at various temperatures exhibited an emission peak at around 480 nm (blue color) and a quantum efficiency of 60% at maximum by the quantum confinement effect of ZnO nanoparticles, with diameters ranging from 3.1 to 3.5 nm, under ultraviolet excitation. No degradation of the quantum efficiencies and no peak shifting in the emission spectra were observed for 7 days following the preparation, which indicated no growth of ZnO nanoparticles in the aqueous medium.  相似文献   

12.
Zinc oxide (ZnO) nanoparticles and nano-structures were synthesized using RF inductively-coupled thermal plasma system. The ZnO nanoparticles synthesized in high enthalpy plasmas showed high purity and extremely small crystalline characteristics with the (30–50) nm size distribution applicable in various areas. The resultant morphology of the ZnO nanoparticles was influenced by process parameters such as chamber pressure, a cooling method and a reactor configuration. Thus, the effects of process conditions were discussed with perspective of the re-crystallization. In addition, by controlling the operational parameters, flower-like shaped ZnO nano-structures consisting of many hexagonal nano-rods with six facets were also obtained. The ZnO nano-structures showed a good optical property in photoluminescence analysis.  相似文献   

13.
Fabrication of Eu3+-doped ZnO nanoparticles by laser ablation in liquid medium is reported. Sintered disks made of mixed powders of ZnO and Eu2O3 are used for targets, and surfactant of sodium dodecyl sulfate or LiOH is included in solution. Round-shaped nanoparticles with the diameter of 5??30?nm are synthesized. When the ZnO host is photoexcited, broad green photoluminescence (PL) of oxygen vacancies in the ZnO host as well as red PL of Eu3+ is observed at room temperature. The red PL peak of Eu3+ included in the ZnO host lattice is different from that of the source material of Eu2O3. Energy transfer from the ZnO host to Eu3+ is demonstrated in site-selectively excited PL spectra and its excitation spectra. This result shows that the liquid-phase laser ablation is useful for doping active centers into nanoparticles.  相似文献   

14.
Well-dispersed undoped and Mg-doped ZnO nanoparticles with different doping concentrations at various annealing temperatures are synthesized using basic chemical solution method without any capping agent. To understand the effect of Mg doping and heat treatment on the structure and optical response of the prepared nanoparticles, the samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray (EDX), UV–Vis optical absorption, photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The UV–Vis absorbance and PL emission show a blue shift with increasing Mg doping concentration with respect to bulk value. UV–Vis spectroscopy is also used to calculate the band-gap energy of nanoparticles. X-ray diffraction results clearly show that the Mg-doped nanoparticles have hexagonal phase similar to ZnO nanoparticles. TEM image as well as XRD study confirm the estimated average size of the samples to be between 6 and 12 nm. Furthermore, it is seen that there was an increase in the grain size of the particles when the annealing temperature is increased.  相似文献   

15.
In the present paper, ZnO nanoparticles (NPs) with particle size of 20–50 nm have been synthesized by hydrothermal method. UV-visible absorption spectra of ZnO nanoparticles show absorption edge at 372 nm, which is blue-shifted as compared to bulk ZnO. Photoluminescence (PL) and photoconductive device characteristics, including field response, light intensity response, rise and decay time response, and spectral response have been studied systematically. The photoluminescence spectra of these ZnO nanoparticles exhibited different emission peaks at 396 nm, 416 nm, 445 nm, 481 nm, and 524 nm. The photoconductivity spectra of ZnO nanoparticles are studied in the UV-visible spectral region (366–691 nm). In spectral response curve of ZnO NPs, the wavelength dependence of the photocurrent is very close to the absorption and photoluminescence spectra. The photo generated current, Ipc = (Itotal - Idark) and dark current Idc varies according to the power law with the applied field IpcαVr and with the intensity of illumination IpcαIL r, due to the defect related mechanism including both recombination centers and traps. The ZnO NPs is found to have deep trap of 0.96 eV, very close to green band emission. The photo and dark conductivities of ZnO NPs have been measured using thick film of powder without any binder.  相似文献   

16.
Cu掺杂氧化锌薄膜的发光特性研究   总被引:15,自引:0,他引:15       下载免费PDF全文
通过射频反应溅射法在Si(111)衬底上制备了不同Cu掺杂量的ZnO薄膜.室温下测量了样品的光致发光(PL)谱,所有样品的PL谱中均观察到435?nm左右的蓝光发光带,该发光带的强度与Cu掺杂量和溅射功率有关.当溅射功率为150?W,Cu掺杂量为2.5%时,ZnO薄膜的PL谱中出现了较强的蓝光双峰,而溅射功率为100?W,Cu掺杂量为1.5%时,出现了位于437nm(2.84eV)处较强的蓝光峰,后者的取向性较好.还研究了掺杂量和溅射功率对发光特性的影响,并对样品的蓝光发光机制进行了探讨. 关键词: ZnO薄膜 Cu掺杂 光致发光谱 射频反应共溅射  相似文献   

17.
We present a simple way to synthesize FePt and ZnO (wide-band-gap semiconductor) nanoparticle composites. The FePt nanoparticles were fabricated using the method reported by Sun et al. By controlling the heating rate, 3 nm FePt nanoparticles were synthesized. Well-dispersed FePt and ZnO nanoparticle composites were prepared by further adding zinc acetate and oleyl amine into the 3 nm FePt nanoparticle dispersion. By controlling the molar ratio of the FePt and zinc acetate, FePt and ZnO nanoparticle composites with different FePt particle fractions were obtained. The intensity of photo luminescence spectra of the nanoparticle composites increases very much with decreasing FePt particle fraction, whereas the peak position shifts a little. After annealing at 550 °C for half an hour, the nanoparticle composites become magnetically hard or semi-hard with coercivity much dependent on the FePt particle volume fraction. The coercivity of the composites increases with annealing temperature. The composites hold the promise of applications in new generation recording and/or optical devices.  相似文献   

18.
The application of zinc oxide (ZnO) nanoparticles in biomaterials has increased significantly in the recent years. Here, we aimed to study the potential deleterious effects of ZnO on blood components, including human serum albumin (HSA), erythrocytes and human isolated primary neutrophils. To test the influence of the morphology of the nanomaterials, ZnO nanoneedles (ZnO-nn) and nanoflowers (ZnO-nf) were synthesized. The zeta potential and mean size of ZnO-nf and ZnO-nn suspensions in phosphate-buffered saline were ?10.73 mV and 3.81 nm and ?5.27 mV and 18.26 nm, respectively. The incubation of ZnO with HSA did not cause its denaturation as verified by the absence of significant alterations in the intrinsic and extrinsic fluorescence and in the circular dichroism spectrum of the protein. The capacity of HSA as a drug carrier was not affected as verified by employing site I and II fluorescent markers. Neither type of ZnO was able to provoke the activation of neutrophils, as verified by lucigenin- and luminol-dependent chemiluminescence and by the extracellular release of hydrogen peroxide. ZnO-nf, but not ZnO-nn, induced the haemolysis of erythrocytes. In conclusion, our results reinforce the concept that ZnO nanomaterials are relatively safe for usage in biomaterials. A potential exception is the capacity of ZnO-nf to promote the lysis of erythrocytes, a discovery that shows the importance of the morphology in the toxicity of nanoparticles.  相似文献   

19.
Un-doped and Mn-doped ZnO nanoparticles were successfully synthesized in an ethanolic solution by using a sol-gel method. Material properties of the samples dependence on preparation conditions and Mn concentrations were investigated while other parameters were controlled to ensure reproducibility. It was observed that the structural properties, particle size, band gap, photoluminescence intensity and wavelength of maximum intensity were influenced by the amount of Mn ions present in the precursor. The XRD spectra for ZnO nanoparticles show the entire peaks corresponding to the various planes of wurtzite ZnO, indicating a single phase. The diffraction peaks of doped samples are slightly shifted to lower angles with an increase in the Mn ion concentration, signifying the expansion of the lattice constants and increase in the band gap of ZnO. All the samples show the absorption in the visible region. The absorbance spectra show that the excitonic absorption peak shifts towards the lower wavelength side with the Mn-doped ZnO nanoparticles. The PL spectra of undoped ZnO consist of UV emission at 388 nm and broad visible emission at 560 nm with varying relative peak intensities. The doping of ZnO with Mn quenches significantly the green emission while UV luminescence is slightly affected.  相似文献   

20.
Self-assembled one-dimensional (1D) zinc oxide (ZnO) rods and three-dimensional (3D) cupric oxide (CuO) cubes like nanostructures with a mean crystallite size of approximately 33 and 32 nm were synthesized through chemical route in the presence of polyvinylpyrrolidone (PVP) under mild synthesis conditions. The technique used for the synthesis of nanoparticles seems to be an efficient, inexpensive and easy method. X-Ray diffraction patterns confirmed well crystallinity and phase purity of the as prepared samples, followed by the compositional investigation using Fourier Transform Infrared (FT-IR) spectroscopy. The formation of ZnO nanorods and CuO nanocubes like structures were through Scanning Electron Microscopy (SEM) images. The mechanism and the formation factors of the self-assembly were discussed in detail. It was clearly observed from results that the concentration of precursors and PVP were important factors in the synthesis of self-assembly ZnO and CuO nanostructures. These self-assembly nanostructures maybe used as novel materials in various potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号