首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Functional MRI (fMRI) has evolved from simple observations of regional changes in MRI signals caused by cortical activity induced by a task or stimulus, to task-free acquisitions of images in a resting state. Such resting state signals contain low frequency fluctuations which may be correlated between voxels, and strongly correlated regions are deemed to reflect functional connectivity within synchronized circuits. Resting state functional connectivity (rsFC) measures have been widely adopted by the neuroscience community, and are being used and interpreted as indicators of intrinsic neural circuits and their functional states in a broad range of applications, both basic and clinical. However, there has been relatively little work reported that validates whether inter-regional correlations in resting state fluctuations of fMRI (rsfMRI) signals actually measure functional connectivity between brain regions, or to establish how MRI data correlate with other metrics of functional connectivity. In this mini-review, we summarize recent studies of rsFC within mesoscopic scale cortical networks (100 μm–10 mm) within a well defined functional region of primary somatosensory cortex (S1), as well as spinal cord and brain white matter in non-human primates, in which we have measured spatial patterns of resting state correlations and validated their interpretation with electrophysiological signals and anatomic connections. Moreover, we emphasize that low frequency correlations are a general feature of neural systems, as evidenced by their presence in the spinal cord as well as white matter. These studies demonstrate the valuable role of high field MRI and invasive measurements in an animal model to inform the interpretation of human imaging studies.  相似文献   

2.
The noninvasive imaging of the monkey auditory system with functional magnetic resonance imaging (fMRI) can bridge the gap between electrophysiological studies in monkeys and imaging studies in humans. Some of the recent imaging of monkey auditory cortical and subcortical structures relies on a technique of “sparse imaging,” which was developed in human studies to sidestep the negative influence of scanner noise by adding periods of silence in between volume acquisition. Among the various aspects that have gone into the ongoing optimization of fMRI of the monkey auditory cortex, replacing the more common continuous-imaging paradigm with sparse imaging seemed to us to make the most obvious difference in the amount of activity that we could reliably obtain from awake or anesthetized animals. Here, we directly compare the sparse- and continuous-imaging paradigms in anesthetized animals. We document a strikingly greater auditory response with sparse imaging, both quantitatively and qualitatively, which includes a more expansive and robust tonotopic organization. There were instances where continuous imaging could better reveal organizational properties that sparse imaging missed, such as aspects of the hierarchical organization of auditory cortex. We consider the choice of imaging paradigm as a key component in optimizing the fMRI of the monkey auditory cortex.  相似文献   

3.
Recently, we have demonstrated that the fine-digit topography (millimeter sized) previously identified in the primary somatosensory cortex (SI), using electrophysiology and intrinsic signal optical imaging, can also be mapped with submillimeter resolution using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging at high field. In the present study, we have examined the dependence of BOLD signal response on stimulus intensity in two subregions of SI, Areas 3b and 1. In a region(s)-of-interest (ROI) analysis of Area 3b, BOLD signal amplitude increased linearly with increasing amplitude of an 8-Hz vibrotactile stimulus, and BOLD signal was sustained throughout the stimulation period. In contrast, in Area 1, a significant BOLD signal response was only observed with more intense stimuli, and ROI analysis of the dependence of BOLD response showed no significant dependence on stimulus intensity. In addition, activation was not sustained throughout the period of stimulation. Differing responses of Areas 3b and 1 suggest potentially divergent roles for subregions of SI cortices in vibrotactile intensity encoding. Moreover, this study underscores the importance of imaging at small spatial scales. In this case, such high-resolution imaging allows differentiation between area-specific roles in intensity encoding and identifies anatomic targets for detailed electrophysiological studies of somatosensory neuronal populations with different coding properties. These experiments illustrate the value of nonhuman primates for characterizing the dependence of the BOLD signal response on stimulus parameters and on underlying neural response properties.  相似文献   

4.
The correlations in the fluctuations in the blood oxygenation level-dependent (BOLD) MRI signal between anatomically distinct regions of the cortex that are known components of functional systems have been previously studied as possible indicators of functional connectivity. The objective of this study was to examine the effect of sensorimotor brain activity, as assessed by task-based functional magnetic resonance imaging (fMRI), on functional connectivity indices in the same region. Regions of activation for sequential finger motion were determined using a task-based, block-design fMRI study. Functional connectivity measurements based on interregional correlations were acquired at rest and during continuous, sequential finger motion. Connectivity indices were determined using normalized mean correlations within and between three regions of interest activated for the finger motion task. Connectivity indices were also determined for a control region that was not activated for the task. Continuous motor tasks performed during BOLD measurements did not significantly affect the functional connectivity as compared to the connectivity at rest within or between regions known to be activated by the task. However, there appeared to be a trend suggesting a slight reduction in connectivity indices during the motor task. The connectivity within and between those areas not activated for the task remained unchanged between conditions. These results suggest that in the motor system investigated, the recruitment of neurons to perform a specific task may moderately reduce the degree of hemodynamic coupling within and between regions.  相似文献   

5.
The study of effective connectivity by means of neuroimaging depends on the measurement of similarity between activity patterns at different locations in the brain, without necessarily presupposing a particular model for this dependence. When these interactions are measured using functional magnetic resonance imaging (fMRI) techniques, however, imaging and physiological artifacts create patterns of dependence that may be unrelated to cortical activity. We demonstrate some of these effects through the measurement of short-range dependencies present in fMRI scans of the primary visual cortex (V1) in the anaesthetized macaque monkey. High-field (4.7 T) fMRI scans were conducted to measure responses based on the blood oxygen level-dependent contrast mechanism, during periods of no sensory stimulation and of visual stimulation with rotating polar-transformed checkerboard gratings. Dependence between the haemodynamic activity at different spatial locations (i.e., different voxels) was measured using correlation, mutual information and functional covariance. Particular attention was paid to understanding the sources of spurious dependence that may be observed during such investigations. Two main effects were detected: (a) short-range correlations introduced by the process of image reconstruction and (b) perturbations in the haemodynamic response caused by breathing. The image reconstruction artifacts were shown to create an artificially high short-range dependence in the readout direction of the scan, and the breathing artifacts caused enhanced short-range dependence in both the readout and phase-encode directions. Additional dependence in the phase-encode direction due to image-ghosting is also possible but will not be discussed in this report, as it can be alleviated by fine adjustment of preemphasis (elimination of eddy currents). A technique is described for removing breathing artifacts, and the effect of breathing on the apparent dependence between voxels is illustrated. The correlation of haemodynamic activity with the stimulus was found to be affected by breathing, although this effect can be neutralised by averaging the haemodynamic responses over many repetitions of the stimulus. Nonetheless, patterns of dependent activity between voxels may be lost in this averaging process, which makes the removal of breathing artifacts necessary if statistical dependence and the study of effective connectivity is the primary aim of an investigation.  相似文献   

6.
Functional magnetic resonance imaging (fMRI) studies have shown dysfunction in key areas associated with the thalamocortical circuit in patients with schizophrenia. This study examined the functional connectivity involving the frontal-thalamic circuitry during a spatial focusing-of-attention task in 18 unmedicated patients with schizophrenia and 38 healthy controls. Functional connectivity was analyzed by assigning seed regions (in the thalamic nuclei (mediodorsal nucleus (MDN), pulvinar, anterior nucleus (AN)), the dorsolateral prefrontal cortex (Brodmann areas 9 and 46), and the caudate), and correlating their respective activity with that in the non-seed regions voxel-wise. Functional connectivity analysis demonstrated that functional connectivity was significantly impaired in patients, e.g., between the right pulvinar and regions such as the prefrontal and temporal cortices and the cerebellum. On the other hand, enhanced functional connectivity was found in patients e.g., between the AN and regions such as the prefrontal and temporal cortices. In addition, the patients had significantly lower task performance and less (but non-significant) brain activation than those of controls. These results revealed disturbed functional integration in schizophrenia, and suggested that the functional connectivity abnormalities in the thalamocortical circuitry, especially the frontal-thalamic circuitry, may underlie the attention deficits in schizophrenia patients. Further, this study suggested that functional connectivity analysis might be more sensitive than brain activation analysis in detecting the functional abnormalities in schizophrenia.  相似文献   

7.
Dysfunction of the corticolimbic circuitry has been highlighted in social anxiety disorder (SAD) during social stimuli. However, few studies have investigated functional connectivity in SAD during the resting state, which may improve our understanding of SAD pathophysiology. The aim of this study was to investigate whether whole-brain functional connectivity might be aberrant in SAD patients, and if so, whether these changes are related to the measured clinical severity. Seventeen SAD patients and 19 healthy controls participated in resting-state functional magnetic resonance imaging. The brain was first divided into 90 paired brain regions and functional connectivity was then estimated by temporal correlation between each of these regions. Furthermore, connections that were significantly disrupted in SAD patients were correlated with clinical severity measured using the Liebowitz Social Anxiety Scale. Compared with healthy controls, SAD patients showed decreased positive connections within the frontal lobe and decreased negative connections between the frontal and occipital lobes. In particular, the weaker negative connections between the frontal lobe, which mainly involved the right median prefrontal cortex, and the occipital lobe had a significant positive correlation with the severity of SAD symptoms. The results support the hypothesis that some abnormalities of functional connectivity exist in SAD patients, which relate to the frontal cortex and occipital cortex. In addition, decreased functional connectivity between the frontal and occipital lobes and within the frontal lobe might be related to abnormal information processing and reflect disturbed neural organization resulting in defective social cognition, which could represent an early imaging biomarker for SAD.  相似文献   

8.
静息状态下脑功能连接的磁共振成像研究   总被引:1,自引:0,他引:1  
静息状态下脑功能连接的磁共振成像研究近年来取得了迅猛发展. 通过对fMRI信号低频涨落成分的同步性分析,可以得到大脑静息态任意脑区的功能连接和多套网络系统,其中“默认网络”的发现可能为人脑固有网络的研究提供新的思路. 而静息态网络与解剖连接之间可能存在的对应,以及在神经精神疾病患者脑中性质和连接的异常改变,使其具有重要的研究和临床应用价值. 该文总结了静息状态功能磁共振成像的主要研究成果,对静息状态脑功能网络的发现和发展、研究方法、各网络及其特点以及在临床方面的应用进行简单的介绍和分析.  相似文献   

9.
The cerebral cortex is the main target of analysis in many functional magnetic resonance imaging (fMRI) studies. Since only about 20% of the voxels of a typical fMRI data set lie within the cortex, statistical analysis can be restricted to the subset of the voxels obtained after cortex segmentation. While such restriction does not influence conventional univariate statistical tests, it may have a substantial effect on the performance of multivariate methods.

Here, we describe a novel approach for data-driven analysis of single-subject fMRI time series that combines techniques for the segmentation and reconstruction of the cortical surface of the brain and the spatial independent component analysis (sICA) of the functional time courses (TCs). We use the mesh of the white matter/gray matter boundary, automatically reconstructed from high-spatial-resolution anatomical MR images, to limit the sICA decomposition of a coregistered functional time series to those voxels which are within a specified region with respect to the cortical sheet (cortex-based ICA, or cbICA). We illustrate our analysis method in the context of fMRI blocked and event-related experimental designs and in an fMRI experiment with perceptually ambiguous stimulation, in which an a priori specification of the stimulation protocol is not possible.

A comparison between cbICA and conventional hypothesis-driven statistical methods shows that cortical surface maps and component TCs blindly obtained with cbICA reliably reflect task-related spatiotemporal activation patterns. Furthermore, the advantages of using cbICA when the specification of a temporal model of the expected hemodynamic response is not straightforward are illustrated and discussed. A comparison between cbICA and anatomically unconstrained ICA reveals that — beside reducing computational demand — the cortex-based approach improves the fitting of the ICA model in the gray matter voxels, the separation of cortical components and the estimation of their TCs, particularly in the case of fMRI data sets with a complex spatiotemporal statistical structure.  相似文献   


10.
Gradient echo (GE) and echo planar imaging (EPI) techniques are two different approaches to functional MRI (fMRI). In contrast to GE sequences, the ultra short EPI technique facilitates fMRI experiments with high spatial and temporal resolution or mapping of the whole brain. Although it has become the method of choice for fMRI, EPI is generally restricted to modern scanners with a strong gradient system. The aim of our study was to evaluate the applicability of EPI for fMRI of the motor cortex using a 1.5 T scanner with a conventional gradient system of 10 mT/m (rise time: 1 ms). Therefore, EPI was compared with a well-established high resolution fast low angle shot (FLASH) technique (matrix size 1282). The FLASH technique was applied additionally with a 642 matrix size to exclude influences caused by different spatial resolution, because the EPI sequence was restricted to a 642 matrix size. A total of 35 healthy volunteers were included in this study. The task consisted of clenching and spreading of the right hand. FLASH and EPI techniques were compared regarding geometric distortions as well as qualitative and quantitative fMRI criteria: Mean signal increase between activation and rest and the area of activation were measured within the contralateral, ipsilateral, and supplementary motor cortex. The quality of subtraction images between activation and rest, as well as the quality of z-maps and time course within activated regions of interest, was evaluated visually. EPI revealed significant distortions of the anterior and postior brain margins; lateral distortions (relevant for the motor cortex) could be neglected in most cases. The mean signal increase was significantly higher using FLASH 1282 compared to FLASH 642 and EPI 642, whereas the activated areas proved to be smaller in FLASH 1282 functional images. Both results can be explained by well-documented partial volume effects, caused by different voxel size. Similar quality of the subtraction images and of the time courses in different regions of interest were found for all techniques under investigation, but slightly reduced quality of z-map in FLASH 1282. Within the limits of reproducibility and measurement accuracy, the location of contralateral activation was similar using FLASH and EPI sequences. In conclusion, EPI proved to be a reliable technique for fMRI of the motor cortex, even on an MR scanner with a conventional gradient system.  相似文献   

11.
Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed to identify effective connectivity in the human brain with functional magnetic resonance imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pair-wise GCM has commonly been applied based on single-voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of fMRI data with GCM. To compare the effectiveness of our approach with traditional pair-wise GCM models, we applied a well-established conditional GCM to preselected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis of an fMRI data set in the temporal domain. Data sets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM-detected brain activation regions in the emotion-related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state data set, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network that can be characterized as both afferent and efferent influences on the medial prefrontal cortex and posterior cingulate cortex. These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive model can achieve greater accuracy in detecting network connectivity than the widely used pair-wise GCM, and this group analysis methodology can be quite useful to extend the information obtainable in fMRI.  相似文献   

12.
Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies.  相似文献   

13.
Connectivity refers to the relationships that exist between different regions of the brain. In the context of functional magnetic resonance imaging (fMRI), it implies a quantifiable relationship between hemodynamic signals from different regions. One aspect of this relationship is the existence of small timing differences in the signals in different regions. Delays of 100 ms or less may be measured with fMRI, and these may reflect important aspects of the manner in which brain circuits respond as well as the overall functional organization of the brain. The multivariate autoregressive time series model has features to recommend it for measuring these delays and is straightforward to apply to hemodynamic data. In this review, we describe the current usage of the multivariate autoregressive model for fMRI, discuss the issues that arise when it is applied to hemodynamic time series and consider several extensions. Connectivity measures like Granger causality that are based on the autoregressive model do not always reflect true neuronal connectivity; however, we conclude that careful experimental design could make this methodology quite useful in extending the information obtainable using fMRI.  相似文献   

14.
The blood-oxygenation-level-dependent (BOLD) signal is an indirect hemodynamic signal that is sensitive to cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen. Therefore, the BOLD signal amplitude and dynamics cannot be interpreted unambiguously without additional physiological measurements, and thus, there remains a need for a functional magnetic resonance imaging (fMRI) signal, which is more closely related to the underlying neuronal activity. In this study, we measured CBF with continuous arterial spin labeling, CBV with an exogenous contrast agent and BOLD combined with intracortical electrophysiological recording in the primary visual cortex of the anesthetized monkey. During inhalation of 6% CO2, it was observed that CBF and CBV are not further increased by a visual stimulus, although baseline CBF for 6% CO2 is below the maximal value of CBF. In contrast, the electrophysiological response to the stimulation was found to be preserved during hypercapnia. As a consequence, the simultaneously measured BOLD signal responds negatively to a visual stimulation for 6% CO2 inhalation in the same voxels responding positively during normocapnia. These observations suggest that the fMRI response to a sensory stimulus for 6% CO2 inhalation occurs in the absence of a hemodynamic response, and it therefore directly reflects oxygen extraction into the tissue.  相似文献   

15.
Previous imaging work has identified a frontoparietal network in the human brain involved in many different cognitive functions, as well as in simple updates of attended information. To determine whether a similar network is present in the monkey brain and direct future electrophysiological recordings, we examined the activation of frontoparietal areas during visual stimulation in the awake, fixating monkey. We measured activity with BOLD fMRI in three animals and analyzed the data individually for each animal and at group level. We found reliable activations in lateral prefrontal and parietal areas, even though task-related decision making was minimal, as a response to simple update of visual information. These activations were significant for each individual animal, as well as at group level. Similar to human imaging results the update of visual input was enough to activate an extensive network of frontoparietal cortex in the macaque brain, a network which is normally associated with complex cognitive control processes.  相似文献   

16.
Functional magnetic resonance imaging (fMRI) at high magnetic field strength can suffer from serious degradation of image quality because of motion and physiological noise, as well as spatial distortions and signal losses due to susceptibility effects. Overcoming such limitations is essential for sensitive detection and reliable interpretation of fMRI data. These issues are particularly problematic in studies of awake animals. As part of our initial efforts to study functional brain activations in awake, behaving monkeys using fMRI at 4.7 T, we have developed acquisition and analysis procedures to improve image quality with encouraging results.We evaluated the influence of two main variables on image quality. First, we show how important the level of behavioral training is for obtaining good data stability and high temporal signal-to-noise ratios. In initial sessions, our typical scan session lasted 1.5 h, partitioned into short (<10 min) runs. During reward periods and breaks between runs, the monkey exhibited movements resulting in considerable image misregistrations. After a few months of extensive behavioral training, we were able to increase the length of individual runs and the total length of each session. The monkey learned to wait until the end of a block for fluid reward, resulting in longer periods of continuous acquisition. Each additional 60 training sessions extended the duration of each session by 60 min, culminating, after about 140 training sessions, in sessions that last about 4 h. As a result, the average translational movement decreased from over 500 μm to less than 80 μm, a displacement close to that observed in anesthetized monkeys scanned in a 7-T horizontal scanner.Another major source of distortion at high fields arises from susceptibility variations. To reduce such artifacts, we used segmented gradient-echo echo-planar imaging (EPI) sequences. Increasing the number of segments significantly decreased susceptibility artifacts and image distortion. Comparisons of images from functional runs using four segments with those using a single-shot EPI sequence revealed a roughly twofold improvement in functional signal-to-noise-ratio and 50% decrease in distortion. These methods enabled reliable detection of neural activation and permitted blood-oxygenation-level-dependent-based mapping of early visual areas in monkeys using a volume coil.In summary, both extensive behavioral training of monkeys and application of segmented gradient-echo EPI sequence improved signal-to-noise ratio and image quality. Understanding the effects these factors have is important for the application of high field imaging methods to the detection of submillimeter functional structures in the awake monkey brain.  相似文献   

17.
Laterality index in functional MRI: methodological issues   总被引:3,自引:0,他引:3  
In functional magnetic resonance imaging (fMRI), hemispheric dominance is generally indicated by a measure called the laterality index (LI). The assessment of a meaningful LI measure depends on several methodological factors that should be taken into account when interpreting LI values or comparing between subjects. Principally, these include the nature of the quantification of left and right hemispheres contributions, localisation of volumes of interest within each hemisphere, dependency on statistical threshold, thresholding LI values, choice of activation and baseline conditions and reproducibility of LI values. This review discusses such methodological factors and the different approaches that have been suggested to deal with them. Although these factors are common to a range of fMRI domains, they are discussed here in the context of fMRI of the language system.  相似文献   

18.
We studied neural interactions between brain areas involved in exogenous (stimulus-driven) control of visuospatial attention. With event-related functional magnetic resonance imaging (fMRI), we investigated changes of connectivity during shifts of spatial attention from an attended location to a previously unattended target location. Using a 3-T scanner, fMRI data were acquired from three healthy volunteers. According to a central visual cue, participants directed endogenous spatial attention to the left or the right visual hemifield for blocks of 56 s. Peripheral visual targets were presented unpredictably in either the attended hemifield (valid trials, 80%) or in the unattended hemifield (invalid trials, 20%) and participants performed a two-alternative forced-choice discrimination task with the target, irrespective of cue validity. In accordance with previous results, we found that the temporal–parietal junction (TPJ) mediates the shift of spatial attention toward stimuli presented at the unattended side (i.e., invalid trials). We critically studied the interaction between occipital areas responding to the visual stimuli and other brain regions in order to find regions functionally coupled with the occipital cortex during invalid trials. We found that the coupling between occipital areas processing visual stimuli and the TPJ selectively increased during invalid trials. Our results highlight how changes of connectivity between brain areas can describe attentional processes such as stimulus-driven shifts of spatial attention.  相似文献   

19.
Localization of cognitive processes is a strength of functional neuroimaging. However, information about functional interactions between brain areas is crucial for a deeper understanding of brain function. We applied vector autoregressive modeling in the context of Granger causality as a method to analyze directed connectivity in a standard event-related fMRI study using a simple auditory-motor paradigm. The basic idea is to use temporal information in stochastic time series of a brain region in order to predict signal time courses in other brain regions. Thus, we predicted that the method should demonstrate causal influence of the auditory cortex and the supplementary motor area (SMA) on primary motor cortex. Eleven right-handed healthy female subjects were instructed to press a ball with either their left or their right hand when hearing the command "left" or "right" in the scanner. Influence to the left motor cortex was found from bilateral auditory cortex as well as from the SMA in 9 of 11 subjects. Granger causality to the right motor cortex existed from bilateral auditory cortex in 5 and from SMA in 6 subjects. Granger causality to the SMA existed from right auditory cortex in 7 subjects and from left auditory cortex in 8 subjects. Our findings in a simple task show that even under suboptimal circumstances (a relatively long TR of 2440 ms), Granger causality can be a useful tool to explore effective connectivity. Temporally optimized scanning should increase that potential.  相似文献   

20.
Acupoint specificity is one of the central issues of functional magnetic resonance imaging (fMRI) studies of acupuncture and has been under discussed. However, strong and consistent proof has not been provided for the existence of acupoint specificity, and unsuitable analysis approach applied could be the reason. We observed that previous researches of acupoint specificity were mostly based on model-based methods which were limited to make exploration of acupoint specificity because of the inaccurate specified prior. Here we applied multi-voxel pattern analysis (MVPA) to investigate the specificity of brain activation patterns induced by acupuncture stimulations at a vision-related acupoint (GB37) and a nearby nonacupoint (NAP). Results showed that multiple brain areas could differentiate the central neural response patterns induced by acupuncture stimulation at these two sites with higher accuracy above the chance level. These regions included occipital cortex, limbic-cerebellar areas and somatosensory cortex. Our results support that the characteristic neural response patterns of brain cortex to the acupuncture stimulation at GB37 and a nearby NAP could differ from each other effectively with the application of MVPA approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号