首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The article deals with the ruthenium complexes, [(bpy)Ru(Q')(2)] (1-3) incorporating two unsymmetrical redox-noninnocent iminoquinone moieties [bpy = 2,2'-bipyridine; Q' = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, aryl = C(6)H(5) (Q'(1)), 1; m-Cl(2)C(6)H(3) (Q'(2)), 2; m-(OCH(3))(2)C(6)H(3) (Q'(3)), 3]. 1 and 3 have been preferentially stabilised in the cc-isomeric form while both the ct- and cc-isomeric forms of 2 are isolated [ct: cis and trans and cc: cis and cis with respect to the mutual orientations of O and N donors of two Q']. The isomeric identities of 1-3 have been authenticated by their single-crystal X-ray structures. The collective consideration of crystallographic and DFT data along with other analytical events reveals that 1-3 exhibit the valence configuration of [(bpy)Ru(II)(Q'(Sq))(2)]. The magnetization studies reveal a ferromagnetic response at 300 K and virtual diamagnetic behaviour at 2 K. DFT calculations on representative 2a and 2b predict that the excited triplet (S = 1) state is lying close to the singlet (S = 0) ground state with singlet-triplet separation of 0.038 eV and 0.075 eV, respectively. In corroboration with the paramagnetic features the complexes exhibit free radical EPR signals with g~2 and (1)HNMR spectra with broad aromatic proton signals associated with the Q' at 300 K. Experimental results in conjunction with the DFT (for representative 2a and 2b) reveal iminoquinone based preferential electron-transfer processes leaving the ruthenium(ii) ion mostly as a redox insensitive entity: [(bpy)Ru(II)(Q'(Q))(2)](2+) (1(2+)-3(2+)) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Q))](+) (1(+)-3(+)) ? [(bpy)Ru(II)(Q(')(Sq))(2)] (1-3) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Cat))](-)/[(bpy)Ru(III)(Q(')(Cat))(2)](-) (1(-)-3(-)). The diamagnetic doubly oxidised state, [(bpy)Ru(II)(Q'(Q))(2)](2+) in 1(2+)-3(2+) has been authenticated further by the crystal structure determination of the representative [(bpy)Ru(II)(Q'(3))(2)](ClO(4))(2) [3](ClO(4))(2) as well as by its sharp (1)H NMR spectrum. The key electronic transitions in each redox state of 1(n)-3(n) have been assigned by TD-DFT calculations on representative 2a and 2b.  相似文献   

2.
The photocatalytic formation of a non-heme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+) [N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine], efficiently proceeds via electron transfer from the excited state of a ruthenium complex, [Ru(II)(bpy)(3)](2+)* (bpy = 2,2'-bipyridine) to [Co(III)(NH(3))(5)Cl](2+) and stepwise electron-transfer oxidation of [(N4Py)Fe(II)](2+) with 2 equiv of [Ru(III)(bpy)(3)](3+) and H(2)O as an oxygen source. The oxoiron(IV) complex was independently generated by both chemical oxidation of [(N4Py)Fe(II)](2+) with [Ru(III)(bpy)(3)](3+) and electrochemical oxidation of [(N4Py)Fe(II)](2+).  相似文献   

3.
Addition of 2 equiv of Ce(4+) to the dimeric ruthenium mu-oxo ion cis,cis-[(bpy)(2)Ru(OH(2))](2)O(4+) (formal oxidation state III-III, subsequently denoted [3,3]) or addition of 1 equiv of Ce(4+) to the corresponding [3,4] ion gave near-quantitative conversion to the [4,4] ion, confirming our recent assignment of this oxidation state as an accumulating intermediate during water oxidation by the cis,cis-[(bpy)(2)Ru(O)](2)O(4+) ([5,5]) ion. The rates of water exchange at the cis-aqua positions in the [3,3] and [3,4] ions were investigated by incubating H(2)(18)O-enriched samples in normal water for predetermined times, then oxidizing them to the [5,5] state and measuring by resonance Raman (RR) spectroscopy changes in the magnitudes of the O-isotope sensitive bands at 780 and 818 cm(-1). These bands have been assigned to Ru=(18)O and Ru=(16)O stretching modes, respectively, for ruthenyl bonds formed by deprotonation of the aqua ligands upon oxidation to the [5,5] state. An intermediate accumulated during the course of the isotope exchange reaction that gave a [5,5] ion possessing both approximately 782 and approximately 812 cm(-1) bands; this spectrum was assigned to the mixed-isotope species, (bpy)(2)Ru((16)O)(16)ORu((18)O)(bpy)(2)(4+). Kinetic analysis of solutions at various levels of oxidation indicated that only the [3,3] ion underwent substitution; the exchange rate constant obtained in 0.5 M trifluoromethanesulfonic acid, 23 degrees C, was 7 x 10(-3) s(-1), which is (10(3)-10(5))-fold larger than rate constants measured for anation of monomeric (bpy)(2)Ru(III)X(H(2)O)(3+) ions bearing simple sigma-donor ligands (X).  相似文献   

4.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

5.
The (15)N-labeled diammine(mu-oxo)ruthenium complex cis,cis-[(bpy)(2)(H(3)(15)N)Ru(III)ORu(III)((15)NH(3))(bpy)(2)](4+) ((2-(15)N)(4+)) was synthesized from cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) by using ((15)NH(4))(2)SO(4) and isolated as its perchlorate salt in 17% yield. A 1:1 mixture of (2-(15)N)(4+) and nonlabeled cis,cis-[(bpy)(2)(H(3)(14)N)Ru(III)ORu(III)((14)NH(3))(bpy)(2)](4+) were electrochemically oxidized in aqueous solution. The gaseous products (14)N(2) and (15)N(2) were formed in equimolar amounts with only a small amount of (14)N(15)N detected. This demonstrates that dinitrogen formation by oxidation of the diammine complex proceeds by intramolecular N---N coupling.  相似文献   

6.
The oxidation-induced structural change of a water-oxidizing diruthenium complex, [(bpy)(2)(H(2)O)Ru(III)(micro-O)Ru(III)(OH(2))(bpy)(2)](4+) (bpy = 2,2'-bipyridine), was investigated by means of X-ray absorption spectroscopy. Ru K-edge XANES (X-ray absorption near-edge structure) spectra from the acidic solution and solid precipitates obtained by oxidation showed that the absorption edge shifts toward higher energy with a preedge feature slightly more enhanced than those of the lower oxidation states. This indicates that the higher oxidation state has a lower symmetry due to shortening of the Ru-O bonds that originated from the water ligands. The EXAFS (extended X-ray absorption fine structure) spectra were similar to those of the lower oxidation states, whose analysis revealed the existence of short Ru-O double bonds and an almost linear Ru-O-Ru angle (169 +/- 2 degrees ). Ab initio EXAFS simulations for several possible structural models suggest that the dimeric structure is maintained during the water oxidation reaction.  相似文献   

7.
The synthesis of [Ru(NO(2))L(bpy)(2)](+) (bpy = 2,2'-bipyridine and L = pyridine (py) and pyrazine (pz)) can be accomplished by addition of [Ru(NO)L(bpy)(2)](PF(6))(3) to aqueous solutions of physiological pH. The electrochemical processes of [Ru(NO(2))L(bpy)(2)](+) in aqueous solution were studied by cyclic voltammetry and differential pulse voltammetry. The anodic scan shows a peak around 1.00 V vs. Ag/AgCl attributed to the oxidation process centered on the metal ion. However, in the cathodic scan a second peak around -0.60 V vs. Ag/AgCl was observed and attributed to the reduction process centered on the nitrite ligand. The controlled reduction potential electrolysis at -0.80 V vs. Ag/AgCl shows NO release characteristics as judged by NO measurement with a NO-sensor. This assumption was confirmed by ESI/MS(+) and spectroelectrochemical experiment where cis-[Ru(bpy)(2)L(H(2)O)](2+) was obtained as a product of the reduction of cis-[Ru(II)(NO(2))L(bpy)(2)](+). The vasorelaxation observed in denuded aortic rings pre-contracted with 0.1 mumol L(-1) phenylephrine responded with relaxation in the presence of cis-[Ru(II)(NO(2))L(bpy)(2)](+). The potential of rat aorta cells to metabolize cis-[Ru(II)(NO(2))L(bpy)(2)](+) was also followed by confocal analysis. The obtained results suggest that NO release happens by reduction of cis-[Ru(II)(NO(2))L(bpy)(2)](+) inside the cell. The maximum vasorelaxation was achieved with 1 x 10(-5) mol L(-1) of cis-[Ru(II)(NO(2))L(bpy)(2)](+) complex.  相似文献   

8.
A bis(ruthenium-bipyridine) complex bridged by 1,8-bis(2,2':6',2'-terpyrid-4'-yl)anthracene (btpyan), [Ru(2)(μ-Cl)(bpy)(2)(btpyan)](BF(4))(3) ([1](BF(4))(3); bpy = 2,2'-bipyridine), was prepared. The cyclic voltammogram of [1](BF(4))(3) in water at pH?1.0 displayed two reversible [Ru(II),Ru(II)](3+)/[Ru(II),Ru(III)](4+) and [Ru(II),Ru(III)](4+)/[Ru(III),Ru(III)](5+) redox couples at E(1/2)(1) = +0.61 and E(1/2)(2) = +0.80?V (vs. Ag/AgCl), respectively, and an irreversible anodic peak at around E = +1.2?V followed by a strong anodic currents as a result of the oxidation of water. The controlled potential electrolysis of [1](3+) ions at E = +1.60?V in water at pH?2.6 (buffered with H(3)PO(4)/NaH(2)PO(4)) catalytically evolved dioxygen. Immediately after the electrolysis of the [1](3+) ion in H(2)(16)O at E = +1.40?V, the resultant solution displayed two resonance Raman bands at nu = 442 and 824?cm(-1). These bands shifted to nu = 426 and 780?cm(-1), respectively, when the same electrolysis was conducted in H(2)(18)O. The chemical oxidation of the [1](3+) ion by using a Ce(IV) species in H(2)(16)O and H(2)(18)O also exhibited the same resonance Raman spectra. The observed isotope frequency shifts (Δnu = 16 and 44?cm(-1)) fully fit the calculated ones based on the Ru-O and O-O stretching modes, respectively. The first successful identification of the metal-O-O-metal stretching band in the oxidation of water indicates that the oxygen-oxygen bond at the stage prior to the evolution of O(2) is formed through the intramolecular coupling of two Ru-oxo groups derived from the [1](3+) ion.  相似文献   

9.
Catalytic O(2) evolution with cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(OH(2))(bpy)(2)](4+) (bpy is 2,2-bipyridine), the so-called blue dimer, the first designed water oxidation catalyst, was monitored by UV-vis, EPR, and X-ray absorption spectroscopy (XAS) with ms time resolution. Two processes were identified, one of which occurs on a time scale of 100 ms to a few seconds and results in oxidation of the catalyst with the formation of an intermediate, here termed [3,4]'. A slower process occurring on the time scale of minutes results in the decay of this intermediate and O(2) evolution. Spectroscopic data suggest that within the fast process there is a short-lived transient intermediate, which is a precursor of [3,4]'. When excess oxidant was used, a highly oxidized form of the blue dimer [4,5] was spectroscopically resolved within the time frame of the fast process. Its structure and electronic state were confirmed by EPR and XAS. As reported earlier, the [3,4]' intermediate likely results from reaction of [4,5] with water. While it is generated under strongly oxidizing conditions, it does not display oxidation of the Ru centers past [3,4] according to EPR and XAS. EXAFS analysis demonstrates a considerably modified ligand environment in [3,4]'. Raman measurements confirmed the presence of the O-O fragment by detecting a new vibration band in [3,4]' that undergoes a 46 cm(-1) shift to lower energy upon (16)O/(18)O exchange. Under the conditions of the experiment at pH 1, the [3,4]' intermediate is the catalytic steady state form of the blue dimer catalyst, suggesting that its oxidation is the rate-limiting step.  相似文献   

10.
The cation cis-[Ru(bpy)(2)(5CNU)(2)](2+) (bpy = 2,2'-bipyridine; 5CNU = 5-cyanouracil) was synthesized and investigated for use as a potential light-activated dual-action therapeutic agent. The complex undergoes efficient photoinduced 5CNU ligand exchange for solvent water molecules, thus simultaneously releasing biologically active 5CNU and generating [Ru(bpy)(2)(H(2)O)(2)](2+). The latter binds covalently to ds-DNA, such that photolysis results in the generation of 3 equiv of potential therapeutic agents from a single molecule.  相似文献   

11.
The ruthenium bis(bipyridine) complexes cis-[Ru(bpy)(2)Im(OH(2))](2+), cis-[Ru(bpy)(2)(Im)(2)](2+), cis-[Ru(bpy)(2)(N-Im)(2)](2+), cis-[Ru(dmbpy)(2)Im(OH(2))](2+), cis-[Ru(dmbpy)(2)(N-Im)(OH(2))](2+)(bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, Im = imidazole, N-Im = N-methylimidazole), have been synthesized under ambient conditions in aqueous solution (pH 7). Their electrochemical and spectroscopic properties, absorption, emission, and lifetimes were determined and compared. The substitution kinetics of the cis-[Ru(bpy)(2)Im(OH(2))](2+) complexes show slower rates and have lower affinities for imidazole ligands than the corresponding cis-[Ru(NH(3))(4)Im(OH(2))](2+) complexes. The crystal structures of the monoclinic cis-[Ru(bpy)(2)(Im)(2)](BF(4))(2), space group = P2(1)/a, Z = 4, a = 11.344(1) ?, b = 17.499(3) ?, c = 15.114(3) ?, and beta = 100.17(1) degrees, and triclinic cis-[Ru(bpy)(2)(N-Im)(H(2)O)](CF(3)COO)(2).H(2)O, space group = P&onemacr;, Z = 2, a = 10.432(4) ?, b = 11.995(3) ?, c = 13.912(5) ?, alpha = 87.03(3) degrees, beta = 70.28(3) degrees, and gamma = 71.57(2) degrees, complexes show that these molecules crystallize as complexes of octahedral Ru(II) to two bidentate bipyridine ligands with two imidazole ligands or a water and an N-methylimidazole ligand cis to each other. The importance of these molecules is associated with their frequent use in the modification of proteins at histidine residues and in comparisons of the modified protein derivatives with these small molecule analogs.  相似文献   

12.
We have successfully applied electrospray ionization mass spectrometry (ESI-MS) and (1)H NMR analyses to study ligand substitution reactions of mu-oxo ruthenium bipyridine dimers cis,cis-[(bpy)(2)(L)RuORu(L')(bpy)(2)](n+) (bpy = 2,2'-bipyridine; L and L' = NH(3), H(2)O, and HO(-)) with solvent molecules, that is, acetonitrile, methanol, and acetone. The results clearly show that the ammine ligand is very stable and was not substituted by any solvents, while the aqua ligand was rapidly substituted by all the solvents. In acetonitrile and acetone solutions, the substitution reaction of the aqua ligand(s) competed with a deprotonation reaction from the ligand. The hydroxyl ligand was not substituted by acetonitrile or acetone, but it exchanged slowly with CH(3)O(-) in methanol. The substitution reaction of the aqua ligands in [(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) was more rapid than that of the hydroxyl ligand in [(bpy)(2)(H(2)O)Ru(III)ORu(IV)(OH)(bpy)(2)](4+). In methanol, slow reduction of Ru(III) to Ru(II) was observed in all the mu-oxo dimers, and the Ru-O-Ru bridge was then cleaved to give mononuclear Ru(II) complexes.  相似文献   

13.
The physical and photophysical properties of a series of monometallic, [Ru(bpy)(2)(dmb)](2+), [Ru(bpy)(2)(BPY)](2+), [Ru(bpy)(Obpy)](2+) and [Ru(bpy)(2)(Obpy)](2+), and bimetallic, [{Ru(bpy)(2)}(2)(BPY)](4+) and [{Ru(bpy)(2)}(2)(Obpy)](4+), complexes are examined, where bpy is 2,2'-bipyridine, dmb is 4,4'-dimethyl-2,2'-bipyridine, BPY is 1,2-bis(4-methyl-2,2'-bipyridin-4'-yl)ethane, and Obpy is 1,2-bis(2,2'-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nm region, intraligand pi --> pi transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at -1.3 V and ending at approximately -1.9 V, and emission from a (3)MLCT state having energy maxima between 598 and 610 nm. The Ru(III)/Ru(II) oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy)(2)(BPY)](2+), the Ru(III)/Ru(II) potential for [Ru(bpy)(2)(Obpy)](2+) increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3 ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [{Ru(bpy)(2)}(2)(BPY)](4+), the Ru(III)/Ru(II) potential for [{Ru(bpy)(2)}(2)(Obpy)](4+) increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26. Emission lifetimes measured in 4:1 ethanol:methanol were temperature dependent over 90-360 K. In the fluid environment, emission lifetimes display a biexponential energy dependence ranging from 100 to 241 cm(-)(1) for the first energy of activation and 2300-4300 cm(-)(1) for the second one. The smaller energy is attributed to changes in the local matrix of the chromophores and the larger energy of activation to population of a higher energy dd state. Explanations for the variations in physical properties are based on molecular mechanics calculations which reveal that the Ru-N bond distance increases from 2.05 ? (from Ru(II) to bpy and BPY) to 2.08 ? (from Ru(II) to Obpy) and that the metal-to-metal distance increases from approximately 7.5 ? for [{Ru(bpy)(2)}(2)(Obpy)](4+) to approximately 14 ? for [{Ru(bpy)(2)}(2)(BPY)](4+).  相似文献   

14.
Sui LZ  Yang WW  Yao CJ  Xie HY  Zhong YW 《Inorganic chemistry》2012,51(3):1590-1598
A dimetallic biscyclometalated ruthenium complex, [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) (bpy = 2,2'-bipyridine; dpb = 1,4-di-2-pyridylbenzene), with a tris-bidentate coordination mode has been prepared. The electronic properties of this complex were studied by electrochemical and spectroscopic analysis and DFT/TDDFT calculations on both rac and meso isomers. Complex [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) has a similar 1,4-benzenedicyclometalated ruthenium (Ru-phenyl-Ru) structural component with a previously reported bis-tridentate complex, [(tpy)Ru(tpb)Ru(tpy)](2+) (tpy = 2,2';6',2″-terpyridine; tpb = 1,2,4,5-tetra-2-pyridylbenzene). The charge delocalizations of these complexes across the Ru-phenyl-Ru array were investigated and compared by studying the corresponding one-electron-oxidized species, generated by chemical oxidation or electrochemical electrolysis, with DFT/TDDFT calculations and spectroscopic and EPR analysis. These studies indicate that both [(bpy)(2)Ru(dpb)Ru(bpy)(2)](3+) and [(tpy)Ru(tpb)Ru(tpy)](3+) are fully delocalized systems. However, the coordination mode of the metal component plays an important role in influencing their electronic properties.  相似文献   

15.
The striking difference in cytotoxic activity between the inactive cis-[Ru(bpy)(2)Cl(2)] and the recently reported highly cytotoxic alpha-[Ru(azpy)(2)Cl(2)] (alpha indicating the isomer in which the coordinating Cl atoms, pyridine nitrogens, and azo nitrogens are in mutual cis, trans, cis orientation) encouraged the synthesis of the mixed-ligand compound cis-[Ru(azpy)(bpy)Cl(2)]. The synthesis and characterization of the only occurring isomer, i.e., alpha-[Ru(azpy)(bpy)Cl(2)], 1 (alpha denoting the isomer in which the Cl ligands are cis related to each other and the pyridine ring of azpy is trans to the pyridine ring of bpy), are described. The solid-state structure of 1 has been determined by X-ray structure analysis. The IC(50) values obtained for several human tumor cell lines have indicated that compound 1 shows mostly a low to moderate cytotoxicity. The binding of the DNA model base 9-ethylguanine (9-EtGua) to the hydrolyzed species of 1 has been studied and compared to DNA model base binding studies of cis-[Ru(bpy)(2)Cl(2)] and alpha-[Ru(azpy)(2)Cl(2)]. The completely hydrolyzed species of 1, i.e., alpha-[Ru(azpy)(bpy)(H(2)O)(2)](2+), has been reacted with 9-EtGua in water at room temperature for 24 h. This resulted in the monofunctional binding of only one 9-EtGua, coordinated via the N7 atom. The product has been isolated as alpha-[Ru(azpy)(bpy)(9-EtGua)(H(2)O)](PF(6))(2), 2, and characterized by 2D NOESY NMR spectroscopy. The NOE data show that the 9-EtGua coordinates (under these conditions) at the position trans to the azo nitrogen atom. Surprisingly, time-dependent (1)H NMR data of the 9-EtGua adduct 2 in acetone-d(6) show an unprecedented positional shift of the 9-EtGua from the position trans to the azo nitrogen to the position trans to the bpy nitrogen atom, resulting in the adduct alpha'-[Ru(azpy)(bpy)(9-EtGua)(H(2)O)](PF(6))(2) (alpha' indicating 9-EtGua is trans to the bpy nitrogen). This positional isomerization of 9-EtGua is correlated to the cytotoxicity of 1 in comparison to both the cytotoxicity and 9-EtGua coordination of cis-[Ru(bpy)(2)Cl(2)], alpha-[Ru(azpy)(2)Cl(2)], and beta-[Ru(azpy)(2)Cl(2)]. This positional isomerization process is unprecedented in model base metal chemistry and could be of considerable biological significance.  相似文献   

16.
The complex [Ru(bpy)(AN)4]2+ (bpy = 2,2'-bipyridyl, AN = acetonitrile) has a Ru(II) --> pi(*)(bpy) MLCT band at 388 nm. Upon irradiation on this absorption band, the compound undergoes total regioselective photocleavage yielding complexes fac-[Ru(bpy)(AN)(3)(H(2)O)](2+) and trans-[Ru(bpy)(AN)(2)(H(2)O)(2)](2+) in two consecutive steps with quantum yields of 0.43 and 0.09, respectively. This behavior is a consequence of the stronger sigma-donor ability of the bpy nitrogens that determines the orbital ordering and therefore the nature of the lowest lying 3d-d state responsible for the photochemistry. The two-step photoreaction, which can be followed by UV-vis and NMR spectra, provides a quantitative path to the preparation of trans-polypyridine species with potentially interesting photochemical properties.  相似文献   

17.
Singh TN  Turro C 《Inorganic chemistry》2004,43(23):7260-7262
The ligand-loss photochemistry of cis-[Ru(bpy)(2)(NH(3))(2)](2+) (bpy = 2,2'-bipyridine) was investigated in water and in the presence of added ligands such as bipyridine and chloride. Irradiation of the complex results in the covalent binding to 9-methyl- and 9-ethylguanine, as well as to single-stranded and double-stranded DNA. This photoinduced DNA binding is not observed for the control complex [Ru(bpy)(2)(en)](2+) (en = ethylenediamine) under similar irradiation conditions. The results presented here show that octahedral Ru(II) complexes with photolabile ligands may prove useful as photoactivated cisplatin analogs.  相似文献   

18.
L(2,3)-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru(III)(2)O(H(2)O)(2)(bpy)(4)](4+) water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH(3))(6)](3+) model complex show considerably different splitting of the Ru L(2,3) absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L(2,3)-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L(2,3)-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH(3))(6)](3+) model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.  相似文献   

19.
Chiu WH  Peng SM  Che CM 《Inorganic chemistry》1996,35(11):3369-3374
Two bis(amido)ruthenium(IV) complexes, [Ru(IV)(bpy)(L-H)(2)](2+) and [Ru(IV)(L)(L-H)(2)](2+) (bpy = 2,2'-bipyridine, L = 2,3-diamino-2,3-dimethylbutane, L-H = (H(2)NCMe(2)CMe(2)NH)(-)), were prepared by chemical oxidation of [Ru(II)(bpy)(L)(2)](2+) and the reaction of [(n-Bu)(4)N][Ru(VI)NCl(4)] with L, respectively. The structures of [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN and [Ru(L)(L-H)(2)]Cl(2).2H(2)O were determined by X-ray crystal analysis. [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN crystallizes in the monoclinic space group P2(1)/n with a = 12.597(2) ?, b = 15.909(2) ?, c = 16.785(2) ?, beta = 91.74(1) degrees, and Z = 4. [Ru(L)(L-H)(2)]Cl(2).2H(2)O crystallizes in the tetragonal space group I4(1)/a with a = 31.892(6) ?, c = 10.819(3) ?, and Z = 16. In both complexes, the two Ru-N(amide) bonds are cis to each other with bond distances ranging from 1.835(7) to 1.856(7) ?. The N(amide)-Ru-N(amide) angles are about 110 degrees. The two Ru(IV) complexes are diamagnetic, and the chemical shifts of the amide protons occur at around 13 ppm. Both complexes display reversible metal-amide/metal-amine redox couples in aqueous solution with a pyrolytic graphite electrode. Depending on the pH of the media, reversible/quasireversible 1e(-)-2H(+) Ru(IV)-amide/Ru(III)-amine and 2e(-)-2H(+) Ru(IV)-amide/Ru(II)-amine redox couples have been observed. At pH = 1.0, the E degrees is 0.46 V for [Ru(IV)(bpy)(L-H)(2)](2+)/[Ru(III)(bpy)(L)(2)](3+) and 0.29 V vs SCE for [Ru(IV)(L)(L-H)(2)](2+)/[Ru(III)(L)(3)](3+). The difference in the E degrees values for the two Ru(IV)-amide complexes has been attributed to the fact that the chelating saturated diamine ligand is a better sigma-donor than 2,2'-bipyridine.  相似文献   

20.
Seok WK  Meyer TJ 《Inorganic chemistry》2005,44(11):3931-3941
The oxidation of benzaldehyde and several of its derivatives to their carboxylic acids by cis-[Ru(IV)(bpy)2(py)(O)]2+ (Ru(IV)=O2+; bpy is 2,2'-bipyridine, py is pyridine), cis-[Ru(III)(bpy)2(py)(OH)]2+ (Ru(III)-OH2+), and [Ru(IV)(tpy)(bpy)(O)]2+ (tpy is 2,2':6',2'-terpyridine) in acetonitrile and water has been investigated using a variety of techniques. Several lines of evidence support a one-electron hydrogen-atom transfer (HAT) mechanism for the redox step in the oxidation of benzaldehyde. They include (i) moderate k(C-H)/k(C-D) kinetic isotope effects of 8.1 +/- 0.3 in CH3CN, 9.4 +/- 0.4 in H2O, and 7.2 +/- 0.8 in D2O; (ii) a low k(H2O/D2O) kinetic isotope effect of 1.2 +/- 0.1; (iii) a decrease in rate constant by a factor of only approximately 5 in CH3CN and approximately 8 in H2O for the oxidation of benzaldehyde by cis-[Ru(III)(bpy)2(py)(OH)]2+ compared to cis-[Ru(IV)(bpy)2(py)(O)]2+; (iv) the appearance of cis-[Ru(III)(bpy)2(py)(OH)]2+ rather than cis-[Ru(II)(bpy)2(py)(OH2)]2+ as the initial product; and (v) the small rho value of -0.65 +/- 0.03 in a Hammett plot of log k vs sigma in the oxidation of a series of aldehydes. A mechanism is proposed for the process occurring in the absence of O2 involving (i) preassociation of the reactants, (ii) H-atom transfer to Ru(IV)=O2+ to give Ru(III)-OH2+ and PhCO, (iii) capture of PhCO by Ru(III)-OH2+ to give Ru(II)-OC(O)Ph+ and H+, and (iv) solvolysis to give cis-[Ru(II)(bpy)2(py)(NCCH3)]2+ or the aqua complex and the carboxylic acid as products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号