首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small iron oxide and Co-doped iron oxide nanoparticles (NPs) were synthesized in a commercial amphiphilic block copolymer, poly(ethylene oxide)-b-poly(methacrylic acid) (PEO 68-b-PMAA8), in aqueous solutions. The structure and composition of the micelles containing guest molecules (metal salts) or NPs (metal oxides) were studied using transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The enlarged micelle cores after incorporation of metal salts are believed to be formed by both PMAA blocks containing metal species and penetrating PEO chains. The nanoparticle size distributions in PEO 68-b-PMAA8 were determined using small-angle X-ray scattering (SAXS) in bulk. Two independent methods for SAXS data interpretation for comprehensive analysis of volume distributions of metal oxide NPs showed presence of both small particles and larger entities containing metal species which are ascribed to organization of block copolymer micelles in bulk. The magnetometry measurements revealed that the NPs are superparamagnetic and their characteristics depend on the method of the NP synthesis. The important advantage of the PEO 68-b-PMAA8 stabilized magnetic nanoparticles described in this paper is their remarkable solubility and stability in water and buffers.  相似文献   

2.
Composites containing magnetite nanoparticles in poly(acrylamide-co-hydroxyethylacrylate) cross-linked using poly-ethylene-glycol-diacrylate were prepared and characterized. The magnetite was synthesized in situ in the polymer network by treatment with a water solution of Fe (II) and Fe (III). The salts were then coprecipitated by exposing the swollen gels to ammonia vapors and the obtained magnetic gels dried. The ratio acrylamide (AM)/hydroxyethylacrylate (HEA) was varied to compare matrices with different hydrophilicity. Moreover solutions with different concentration of iron salts were used to swell the gels. The effect of both the network composition and the concentration of iron salts in the swollen polymers on the final structure and properties of the dried magnetic polymers were studied. The investigation was carried out by means of electron diffraction, X-ray diffraction, vibrating sample magnetometry, small angle X-ray scattering and transmission electron microscopy. The coercivity of the magnetic composites prepared was close to zero and they provided super-paramagnetic properties. The decrease of the acrylamide content in the polymer gel and of the iron salts concentration in the swelling aqueous solution leads to the formation of amorphous particles of iron oxide. The average sizes of the magnetite nanoparticles obtained are compared.  相似文献   

3.
Polymer capsules prepared by the successive adsorption of oppositely charged polyelectrolytes are modified by silver nanoparticles using the silver-mirror reaction. Substantial differences in the structure of nanocomposite polyelectrolyte shells of capsules formed on cores composed of polystyrene and CaCO3 are revealed by atomic force microscopy and transmission electron microscopy. The effect of the conditions of silver-mirror reaction (time and temperature) on the amount, size, and the distribution of silver nanoparticles over the capsule surface is studied. It is shown by small-angle X-ray scattering that, upon the formation of nanocomposite capsule shell on calcium carbonate microspherulites, the size of silver nanoparticles is limited primarily by the pore sizes of CaCO3 cores.  相似文献   

4.
In the present study poly(isoprene-block-ethylene oxide), PI-b-PEO, block copolymers are used to structure iron oxide and silica precursors into reverse mesophases, which upon dissolution of the organic matrix lead to well-defined nanoparticles of spheres, cylinders, and plates based on the original structure of the mesophase prepared. The hybrid mesophases with sphere, cylinder, and lamellar morphologies containing the inorganic components in the minority phases are characterized through a combination of small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). After heat treatments the respective nanoparticles on mica surfaces are characterized by scanning force microscopy (SFM). X-ray diffraction (XRD) and superconducting quantum interference device (SQUID) magnetometer measurements are performed to demonstrate that the heat treatment leads to the formation of a magnetic gamma-Fe2O3 crystalline phase within the amorphous aluminosilicate. The results pave the way to functional, i.e., magnetic nanoparticles where the size, shape, and iron oxide concentration can be controlled opening a range of possible applications.  相似文献   

5.
Core-shell microgels made of the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM) and silica nanoparticles as inorganic cores were investigated by dynamic light scattering (DLS) and small angle neutron scattering (SANS). In order to study the response of the particles upon changes of temperature, experiments were done in a temperature interval close to the volume phase transition temperature of the PNIPAM shell. While DLS probes the hydrodynamic dimensions of the particles, determining their centre of mass diffusion, SANS provides the correlation length xi of the PNIPAM network. Additionally, the composite particles were characterised by electron microscopy as well as atomic force microscopy to reveal the core-shell structure and at the same time the approximate dimensions and the shape of the microgels.  相似文献   

6.
The paper provides new insights into the structure of Pt-containing diblock and triblock copolymers based on poly(ethylene oxide) (PEO) and poly(4-vinylpyridine) (P4VP), using a combination of atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and anomalous small-angle X-ray scattering (ASAXS). Parallel studies using methods contributing supplemental structural information allowed us to comprehensively characterize sophisticated polymer systems during metalation and to exclude possible ambiguity of the data interpretation of each of the methods. AFM and TEM make available the determination of sizes of the micelles and of the Pt-containing micelle cores, respectively, while a combination of XRD, TEM, and ASAXS reveals Pt-nanoparticle size distributions and locations along with the structural information about the polymer matrix. In addition, for the first time, ASAXS revealed the organization of Pt-nanoparticle-filled diblock and triblock copolymers in the bulk. The nanoparticle characteristics are mainly determined by the type of block copolymer system in which they are found: larger particles (2.0-3.0 nm) are formed in triblock copolymer micelles, while smaller ones (1.5-2.5 nm) are found in diblock copolymer micelles. This can be explained by facilitated intermicellar exchange in triblock copolymer systems. For both systems, Pt nanoparticles have narrow particle size distributions as a result of a strong interaction between the nanoparticle surface and the P4VP units inside the micelle cores. The pH of the medium mainly influences the particle location rather than the particle size. A structural model of Pt-nanoparticle clustering in the diblock PEO-b-P4VP and triblock P4VP-b-PEO-b-P4VP copolymers in the bulk was constructed ab initio from the ASAXS data. This model reveals that nearly spherical micellar cores of about 10 nm in diameter (filled with Pt nanoparticles) aggregate forming slightly oblate hollow bodies with an outer diameter of about 40 nm.  相似文献   

7.
Metal-polymer nanocomposites have gained increasing attention due to the wide potential applications field. Synthesis of nanoparticles from the gas phase is an intensively studied alternative to the chemical preparation methods. We present a one-step procedure that combines magnetron-based gas aggregation cluster source of silver nanoparticles and simultaneous plasma-enhanced chemical vapour deposition of hexamethyldisiloxane (HMDSO). The key parameter of the process, significantly influencing the morphology and microstructure of studied nanoparticles, was found to be the amount of HMDSO added to the deposition chamber as witnessed by small angle X-ray scattering and X-ray diffraction methods combined with transmission electron microscopy and UV–Vis spectrophotometry. The presence of HMDSO in the chamber leads to changes in the size distribution and also in the architecture of prepared nanoparticles. The increasing amount of HMDSO induces the formation of individual core-shell nanoparticles, chains of core-shell nanoparticles, and for the highest concentration of HMDSO, the synthesis of multi-core-shell nanoparticles. The size of crystallites in the silver cores of nanoparticles decreases with addition of HMDSO, which prevents further aggregation.  相似文献   

8.
氧化铁磁性纳米粒子的表面配体交换及相转移   总被引:1,自引:1,他引:0  
以苯甲醇为单一溶剂, 通过常压、高温热解乙酰丙酮铁, 制备了尺寸单分散的四氧化三铁磁性纳米粒子. 采用透射电镜(TEM), X射线衍射(XRD), 动态光散射(DLS)等方法对粒子形貌和结构进行了表征. 利用傅里叶变换红外(FT-IR)光谱和热重分析(TGA)研究了所制备纳米粒子的表面化学, 结果表明稳定四氧化三铁粒子的是苯甲酸分子, 且表面覆盖度小于20%. 所制备的磁性纳米粒子可以在室温下方便地进行表面配体交换, 从而为氧化铁磁性纳米粒子的功能化提供新的途径.  相似文献   

9.
利用可逆-加成断裂链转移聚合得到全亲水性的嵌段共聚物(PEO-b-PNIPAM), 通过"grafting to"使其接枝到金纳米粒子表面. 通过透射电子显微镜、 紫外-可见吸收光谱、 能谱分析及动态光散射研究了杂化的金纳米粒子的壳层结构及温度响应行为. 实验结果表明, 得到核壳结构的金纳米粒子, 同时其壳层具有温度响应行为. 随着温度的升高, 其流体力学半径略有减小. 在整个升温过程中, 由于外层PEO链段的抑制作用, 没有发生粒子间的聚集.  相似文献   

10.
Nanocapsules containing poly(d,l-lactide) shell and retinyl palmitate core have been prepared by the pre-formed polymer interfacial deposition method. Dynamic light scattering measurements yielded an average hydrodynamic diameter of ~220nm and a polydispersity index of ~0.12. Small-angle neutron scattering experiments revealed the presence of two populations of nanocapsules of core diameters ~192 and 65nm. Freeze fracture transmission electron microscopy showed a polydisperse population of nanocapsules (NC), with a poly(d,l-lactide) shell thickness between 11 and 3nm. For comparison purposes, nanoemulsions (NE, no polymer) and nanospheres (NS, polymer matrix) were also prepared. Each type of nanoparticles exhibited a different morphology (when examined by electron microscopy), in particular NC showed deformability by capillary adhesion. All three types of nanoparticles successfully encapsulated the poorly water-soluble molecules baicalein and benzophenone-3. The thermal behavior of the various nanoparticles was different to a physical mixture of its individual components. Cytotoxicity and phototoxicity assays, performed in human keratinocytes (HaCaT) and murine fibroblasts (BALB/c 3T3), showed that the NC were only cytotoxic at high concentrations. In vitro release studies of benzophenone-3, by the dialysis bag method using NC and NS, showed a sustained release; however, permeation studies using plastic surgery human abdominal skin in Franz diffusion cells showed that a higher amount of benzophenone-3 from NC penetrated into the skin, most probably due to the deformable nature of these nanoparticles.  相似文献   

11.
We present a novel method for the preparation of ultrasmall Au/CdSe core/shell particles. Au-Cd bialloy particles of 4.7 nm diameter were prepared as the precursor. The Cd component in the precursor reacted with the Se source at a temperature of 205 degrees C and was heated to 250 degrees C, leading to formation of a Au/CdSe core/shell structure. The sizes of Au/CdSe nanoparticles have a narrow distribution with an average size of 6.0 nm and Au core of 2.2 nm diameter. The X-ray diffraction pattern and the images of the high-resolution electron transmission microscopy show that the Au cores and the CdSe shells of Au/CdSe core/shell nanoparticles are both well crystallized, and the CdSe shells are in a cubic phase. The absorption spectrum of the Au/CdSe nanoparticles combines the absorption behaviors of the Au cores and the CdSe shells.  相似文献   

12.
We aimed at preparing magnetic iron oxide particles by the oxidation-precipitation method in order to encapsulate these particles in polymer matrices composed of poly(acrylamide-styrene sulfonic acid sodium salt). Nanocomposites were synthesized by the incorporation of surface treated magnetic nanoparticles in the synthesized polymers via in situ inverse mini-emulsion polymerization process. The study parameter was the ionic monomer content in the synthesized polymers. The structure and the morphology of the magnetic nanogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). FTIR and XRD showed that pure magnetite was formed and successfully encapsulated in the composite nanoparticles. The polymer encapsulation could reduce the susceptibility to leaching and could protect the magnetite particle surfaces from oxidation. The ionic monomer content had a great effect on the magnetization behavior. Magnetite prepared by the oxidation precipitation method, of 50 nm mean particle size, was embedded successfully into the polymer nanogels with a reasonable magnetic response, as proved by vibrating sample magnetometer measurement. Magnetic nanocomposites were proven to be super-ferromagnetic materials.  相似文献   

13.
The temperature-responsive ionic-crosslinked polymeric nanocapsules (TRICNs) were fabricated via the 'self-templating' approach from the poly(tert-butyl acrylate-co-N-isopropylacrylamide-co-acrylic acid) (poly(tBA-co-NIPAm-co-AA)) terpolymer nanoparticles prepared via the emulsifier-free emulsion polymerization. After the surface carboxyl groups of the terpolymer nanoparticles were crosslinked with calcium ions, the TRICNs were achieved after the cores of the shell-crosslinked nanoparticles had been etched by being dissolved with acetone. Transmission electron microscope (TEM) showed the particle size of the individual nanocapsules was about 200 nm with the inner diameter of about 140 nm. The lower critical solution temperature (LCST) of the TRICNs was found to be about 31°C from the dynamic light scattering (DLS) analysis. Furthermore, the nanocapsules could disintegrate in acidic media while they were stable in the neutral or alkaline media.  相似文献   

14.
采用改进的Polyol合成法,以PEO-PPO-PEO为表面活性剂制备了链霉亲和素-异硫氰酸荧光素偶联的Fe3O4/Au纳米粒子;利用透射电镜和X射线衍射仪分析证实了Fe3O4/Au的核壳型纳米结构,确定了其粒径和分布;采用紫外-可见吸收光谱仪和荧光光谱仪测定了所制备的纳米粒子的光学活性和荧光特性,并采用振动样品磁强计(VSM)测量了其磁化率.结果表明,所制备的Fe3O4/Au纳米粒子具有光学活性和荧光特性,以及优异的磁性.  相似文献   

15.
Carbon microcapsules containing silicon (Si) nanoparticles (NPs) were prepared from silicon-embedded polymer microspheres. The precursors, polymeric microspheres containing silicon nanoparticles were fabricated by a facile emulsion polymerization with surfactants, sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The effects of monomer, surfactant concentration, and ionic character of surfactant on the formation of microspheres were demonstrated. The successful fabrication of polystyrene/polydivinylbenzene microspheres with Si NPs was confirmed by scanning electron microscopy. Subsequent thermal treatment produced carbon microcapsules having Si NPs. Volume shrinkage of polymer spheres during carbonization step resulting in the formation of internal free spaces in carbon microcapsules is the critical process in this experiment, which can accommodate volume changes of Si NPs during Li ion charge/discharge processes. The successful encapsulation of Si NPs with exterior carbon shell was clearly shown by transmission electron microscopy and X-ray diffraction. The change in size distribution and structure of polymer and carbon microspheres was also revealed. The cyclic performances of these Si@C microcapsules were measured with lithium battery half cell tests.  相似文献   

16.
Iron oxide/MCM-41 nanocomposites, Fe(2)O(3)/MCM-41, containing 5%, 10%, and 20% (w/w) iron oxide, were prepared via a direct nonhydrothermal method at room temperature. The preparations were preformed by using iron(III) nitrate, tetra-ethoxysilane (TEOS), and cetyltrimethylammonium bromide (CTAB) mixed or unmixed with dodecyltrimethylammonium bromide (DTAB). The produced materials were dried and calcined at 550 °C for 3 h. Test materials were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), N(2) gas adsorption/desorption isotherms, small angle and wide angle X-ray diffraction (XRD). Results indicate that mixing of CTAB with DTAB does not harm the formation of blank MCM-41 structure. For the composite Fe(2)O(3)/MCM-41 materials, results showed formation of more stable MCM-41 structure with higher surface area and improved porosity in the presence of mixed (CTAB+DTAB) than in the presence of single (CTAB) surfactants for up to 10% Fe(2)O(3)/MCM-41 (w/w). This was explained in terms of the effect DTAB on contraction of the template micellar size to compensate for the expected size expansion upon the addition of ionic iron(III) nitrate precursor. Highly dispersed Fe(2)O(3) nanoparticles were formed in all cases even with the highest iron oxide percentage. Formation of the nanocomposites was postulated to be determined by fast nucleation and slow growth of iron oxide species, which facilitated formation of well dispersed iron oxide nanoparticles inside and on the wall of the MCM-41 material.  相似文献   

17.
In this study, temperature-responsive magnetite/polymer nanoparticles were developed from iron oxide nanoparticles and poly(ethyleneimine)-modified poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer. The particles were characterized by TEM, XRD, DLS, VSM, FTIR, and TGA. A typical product has an approximately 20 nm magnetite core and an approximately 40 nm hydrodynamic diameter with a narrow size distribution and is superparamagnetic with large saturation magnetization (51.34 emu/g) at room temperature. The most attractive feature of the nanoparticles is their temperature-responsive volume-transition property. DLS results indicated that their average hydrodynamic diameter underwent a sharp decrease from 45 to 25 nm while evaluating the temperature from 20 to 35 degrees C. The temperature-dependent evolution of the C-O stretching band in the FTIR spectra of the aqueous nanoparticles solution revealed that thermo-induced self-assembly of the immobilized block copolymers occurred on the magnetite solid surfaces, which is accompanied by a conformational change from a fully extended state to a highly coiled state of the copolymer. Consequently, the copolymer shell could act as a temperature-controlled "gate" for the transit of guest substance. The uptake and release of both hydrophobic and hydrophilic model drugs were well controlled by switching the transient opening and closing of the polymer shell at different temperatures. A sustained release of about 3 days was achieved in simulated human body conditions. In primary mouse experiments, drug-entrapped magnetic nanoparticles showed good biocompatibility and effective therapy for spinal cord damage. Such intelligent magnetic nanoparticles are attractive candidates for widespread biomedical applications, particularly in controlled drug-targeting delivery.  相似文献   

18.
PEG-coated β-FeOOH nanoparticles were prepared through electrostatic complex formation of iron oxide nanoparticles with poly(ethylene glycol)-poly(aspartic acid) block copolymer [PEG-P(Asp)] in distilled water. By dynamic light scattering (DLS) measurement, the nanopaticle size was determined to be 70 nm with narrow distribution. The FT-IR and zeta potential experimental results proved that PEG-PAsp molecules bound to the surface of the iron oxide nanoparticles via the coordination between the carboxylic acid residues in the PAsp segment of the block copolymer and the surface Fe of the β-FeOOH nanoparticles. The PEG-coated nanoparticles revealed excellent solubility and stability in aqueous solution as well as in physiological saline. In vivo MRI experiments on tumor-bearing mice demonstrated that the PEG-coated nanoparticles prepared by the current approach achieved an appreciable accumulation into solid tumor, suggesting their potential utility as tumor-selective MRI contrast agents.  相似文献   

19.
PEG-coated β-FeOOH nanoparticles were prepared through electrostatic complex formation of iron oxide nanoparticles with poly(ethylene glycol)-poly(aspartic acid) block copolymer [PEG-P(Asp)] in distilled water. By dynamic light scattering (DLS) measurement, the nanopaticle size was determined to be 70 nm with narrow distribution. The FT-IR and zeta potential experimental results proved that PEG-PAsp molecules bound to the surface of the iron oxide nanoparticles via the coordination between the carboxylic acid residues in the PAsp segment of the block copolymer and the surface Fe of the β-FeOOH nanoparticles. The PEG-coated nanoparticles revealed excellent solubility and stability in aqueous solution as well as in physiological saline. In vivo MRI experiments on tumor-bearing mice demonstrated that the PEG-coated nanoparticles prepared by the current approach achieved an appreciable accumulation into solid tumor, suggesting their potential utility as tumor-selective MRI contrast agents.  相似文献   

20.
Many types of colloidal particles possess a core-shell morphology. In this Article, we show that, if the core and shell densities differ, this morphology leads to an inherent density distribution for particles of finite polydispersity. If the shell is denser than the core, this density distribution implies an artificial narrowing of the particle size distribution as determined by disk centrifuge photosedimentometry (DCP). In the specific case of polystyrene/silica nanocomposite particles, which consist of a polystyrene core coated with a monolayer shell of silica nanoparticles, we demonstrate that the particle density distribution can be determined by analytical ultracentrifugation and introduce a mathematical method to account for this density distribution by reanalyzing the raw DCP data. Using the mean silica packing density calculated from small-angle X-ray scattering, the real particle density can be calculated for each data point. The corrected DCP particle size distribution is both broader and more consistent with particle size distributions reported for the same polystyrene/silica nanocomposite sample using other sizing techniques, such as electron microscopy, laser light diffraction, and dynamic light scattering. Artifactual narrowing of the size distribution is also likely to occur for many other polymer/inorganic nanocomposite particles comprising a low-density core of variable dimensions coated with a high-density shell of constant thickness, or for core-shell latexes where the shell is continuous rather than particulate in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号