首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, hybrid film of mesoporous silica film with oriented mesochannels and semiconductor quantum dot has been prepared. Encapsulation of CdS and PbS within the oriented mesochannels leads to a regular arrangement at the macro scale. The hybrid film thus obtained showed remarkable anisotropic photoelectronic properties due to the confinement effect of the oriented mesochannels. Furthermore, due to the independence of the orientations of the mesochannels on the substrate, bilayer films containing both CdS and PbS could be prepared. This design has allowed an extension of the range of light absorption by the thin film as well as an amplification of the response to external photoelectronic effects. Such a hybrid film may prove useful in the design of anisotropic electrodes and electronic nanodevices.  相似文献   

2.
Self-selected recovery of the photoluminescence (PL) of amphiphilic polymer encapsulated PbS quantum dots (QDs) was observed in water for the first time and possible mechanisms were proposed based on investigations by means of transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction and fluorescence spectroscopy. Water-soluble PbS QDs were synthesized by transferring monodispersed QDs capped with hydrophobic ligands of oleylamine from an organic solvent into water via amphiphilic polymers poly(maleic anhydride-alt-1-octadecene-co-poly(ethylene glycol)). The water transfer process leads to a double size distribution (5.6 ± 0.9 nm and 2.7 ± 0.4 nm), attributed to ligand etching together with Ostwald ripening, as well as the fast decay of PL. The automatic recovery of the PL in PbS QDs stored in water in the dark for 3 months was only observed for the subset of smaller QDs and is largely due to the removal of surface defects with aging, as evidenced by the decreased percentage of unpassivated surface atoms from XPS studies. In contrast, the PL of the subset of larger QDs in the same sample does not self-recover in water and can only be slightly recovered by transferring them into environments with less external quenches. The results strongly suggest that it is the surface defect in the larger QDs themselves, introduced during Ostwald ripening, that is primarily responsible for their non-emitting status or rather low PL intensity under different conditions. The increase of unpassivated Pb atoms in larger PbS QDs after the 3 month aging has been confirmed by XPS, which explains their non-recovery behavior in water. The PL-recovered QD sample in water is very stable and shows comparable photostability to the initial QDs dispersed in an organic phase.  相似文献   

3.
The third-order nonlinear optical (3NLO) activity of PbS quantum dots (QDs) encapsulated in zeolite Y has been expected to depend sensitively on the countercation of the zeolite host. However, ion exchange of the pristine countercation, H(+), with other cations has not been possible because the framework decomposes and the QDs aggregate immediately when the PbS QD-incorporating zeolite Y with H(+) as the countercation is exposed to the atmosphere. We now report that when H(+) is transformed to NH(4)(+), the framework of PbS QD-containing zeolite Y does not undergo decomposition and the PbS QDs do not undergo aggregation to form larger QDs during the aqueous ion exchange of NH(4)(+) with alkali-metal ions (M(A)(+) = Li, Na(+), K(+), Rb(+)). The 3NLO activity of the M(A)(+)-exchanged PbS QD-incorporating zeolite Y film increases with increasing size of M(A)(+). The stabilization of the surface-bound exciton by the electron-rich framework oxide and electron-poor cation is proposed to be responsible for the increase. This is the first example of a method for systematically increasing the 3NLO activity of QDs dispersed in a dielectric matrix by systematically changing its properties. These results will serve as a guideline for future research and also promote applications of QD-incorporating zeolites in various fields.  相似文献   

4.
5.
We report here on a detailed study on PbS colloidal quantum dots. A characterization via X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) allowed us to reliably determine the diameter and the shape of the nanocrystals. These data, together with second-derivative analysis of the absorption spectra, allowed us to determine the size dependence of seven transitions in the absorption spectrum; some of these transitions were identified on the basis of their normalized confinement energy. The size dependence of the first excitonic transition was best modeled by a four-band envelope approach which considers the anisotropy of the band edges (Andreev, A. D.; Lipovskii, A. A. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 15402-15404). The extinction coefficients were calculated using concentrations obtained from inductively coupled plasma atomic emission spectrometry (ICP-AES), and their size dependence was found to follow a power law with exponent equal to approximately 2.5. In contrast with what was expected from the effective mass approximation, the per particle absorption cross section of the lowest transition was found to be strongly dependent on the particle size.  相似文献   

6.
We obtain the surface enhanced Raman spectra of 4-mercaptopyridine on lead sulfide (PbS) quantum dots as a function of nanoparticle size and excitation wavelength. The nanoparticle radii are selected to be less than the exciton Bohr radius of PbS, enabling the observation of quantum confinement effects on the spectrum. We utilize the variation of nontotally symmetric modes of both b(1) and b(2) symmetry as compared to the totally symmetric a(1) modes to measure the degree of charge-transfer between the molecule and quantum dot. We find both size dependent and wavelength dependent resonances in the range of these measurements, and attribute them to charge-transfer resonances which are responsible for the Raman enhancement.  相似文献   

7.
Strongly white-emitting (lambda(max) = 495 +/- 10 nm) D- and L- penicillamine capped CdS nanoparticles, which show strong circular dichroism in the range 200-390 nm, have been prepared.  相似文献   

8.
The article describes the results of the investigations of optical and luminescent properties of PbS suspensions and composite coatings stabilized by high‐molecular polyvinylpyrrolidone. Experiments show strong dependence of optical properties and stability of the materials on the concentration ratio between PbS nanoparticles and polymer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Cadmium sulfide (CdS) quantum dots (QDs) encapsulated in block copolymer spheres were synthesized by an aqueous emulsion polymerization process. First, stable dispersions of CdS QDs in water were prepared using a polymer dispersant, either poly(acrylic acid) or a random copolymer having an average of ten acrylic acid and five butyl acrylate units. These polymer dispersants were prepared by reversible addition-fragmentation chain transfer polymerization. Then, the CdS QDs dispersed in water were encapsulated in a polystyrene shell using an emulsion polymerization process. Spectroscopic and microscopic techniques were used to characterize the resulting nanocomposites. Optical properties of QDs in polymer microspheres were investigated by UV-vis and fluorescence spectroscopic studies. Particle sizes of all CdS QD samples were calculated from absorption edges using Henglein's empirical curve. Transmission electron microscopy was used to determine the size and morphology of CdS QD samples. These observations were used to elucidate the mechanism of formation of the resulting well-defined polymer-encapsulated CdS nanoparticles.  相似文献   

10.
Cadmium sulfide (CdS) quantum dots (QDs) were prepared and surface modified by dodecanthiol or mercaptosuccinic acid (MSA) to render a surface with alkyl chains (C(12)-CdS) or carboxylic acid groups (MSA-CdS), respectively. Due to the hydrophobic property of C(12)-CdS, the nanoparticles disperse well in chloroform and stay stable at the air/water interface. However, 3-dimensional (3D) aggregative domains and particle-free pores were formed in the monolayer due to poor particle-water interaction. For the MSA-CdS nanoparticles, the surface was hydrophobized through physical adsorption of a cationic surfactant, cetyltrimethylammonium bromide (CTAB). The capped MSA on the CdS plays an important role in enhancing the adsorption of CTAB and improving the stability of the QDs at the air/water interface. Due to the reversible adsorption of CTAB on MSA-CdS, a hydrophilic area can be exposed in the water-contacting region of a nanoparticle when it stays at the air/water interface. Thus, the CTAB-MSA-CdS QD behaves as an amphiphilic compound at the air/water interface and has properties superior to those of C(12)-CdS QDs in fabrication of layer-by-layer 2D structure of particulate films. The distinct behaviors of the two QDs at the air/water interface and the related effect on the properties of LB films were studied using a number of methods, including pressure-area (pi-A) isotherm, relaxation and hysteresis experiments, in-situ observation of Brewster angle microscopy (BAM), the postdeposition analysis of atomic force microscopy (AFM), and UV-vis spectroscopy.  相似文献   

11.
A new controlled aging methodology was developed for the synthesis of PbS colloidal quantum dots (QDs), applying larger PbS QDs as a starting material for smaller QDs by application of environmentally friendly oleic acid and oleylamine as reagents. This simple and mild procedure provides a possible strategy for tailoring the size-dependent properties of PbS QDs.  相似文献   

12.
13.
Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots   总被引:1,自引:0,他引:1  
Wang GL  Dong YM  Yang HX  Li ZJ 《Talanta》2011,83(3):943-947
The importance of cysteine (Cys) in biological systems has stimulated a great deal of efforts in the development of analytical methods for the determination of this amino acid. In this work, a novel fluorescent probe for Cys based on citrate (Cit)-capped CdS quantum dots (QDs) is reported. The Cit-capped CdS QDs fluorescent probe offers good sensitivity and selectivity for detecting Cys. A good linear relationship was obtained from 1.0 × 10−8 mol L−1 to 5.0 × 10−5 mol L−1 for Cys. The detection limit was calculated as 5.4 × 10−9 mol L−1. The proposed method was applied to detect Cys in human urine samples, which showed satisfactory results. This assay is based on both the lability of Cit and the strong affinity of thiols to the surface of CdS QDs. The addition of Cys improved the passivation of the surface traps of CdS QDs and enhanced the fluorescence intensity.  相似文献   

14.
PbS QDs have been synthesized by an in situ photocatalysis method using the photocatalytic activity of nanocrystalline TiO(2) films. Both the photovoltaic response and size of the synthesized PbS QDs were analyzed. Compared with the conventional synthesis route, this method is simpler and produces less waste.  相似文献   

15.
Toxicities of CdSe and CdSe/CdS quantum dots(QDs) synthesized by ultrasound-assisted methods were investigated in vitro and in vivo.Five human cell lines were used to assess the cytotoxicity of as-prepared CdSe and CdSe/CdS by assays of MTT viability,red blood cell hemolysis,flow cytometry,and fluorescence imaging.The results show that these QDs may be cytotoxic by their influence in S and G2 phases in cell cycles.The cytotoxicity of QDs depends on both the physicochemical properties and related to target cells.  相似文献   

16.
CdS nanoparticles with sizes where a quantum-size effect is observed are structurally characterized in a detailed way. The following complex of structural methods is used to characterize the nanoparticles: electron diffraction; analytical, diffraction, and high-resolution transmission electron microscopy; and small-angle X-ray scattering.  相似文献   

17.
In the study,we observed the strong adsorption of CdTe/CdS QDs to antibodies and the formation of QDs-antibodies conjugates. Capillary electrophoresis with laser-induced fluorescence detection(CE-LIF),fluorescence spectrometry and fluorescence correlation spectroscopy(FCS) were used to characterize the QDs conjugates with antibody.We found that the QDs-antibody conjugates possessed high fluorescence,small hydrodynamic radii and good stability in aqueous solution.  相似文献   

18.
In this contribution, we have studied structural and photophysical properties of aggregated CdS quantum dots (QDs) capped with 2-mercaptoethanol in aqueous medium. The hydrodynamic diameter of the nanostructures in aqueous solution was found to be approximately 160 nm with the dynamic light scattering (DLS) technique, which is in close agreement with atomic force microscopy (AFM) studies (diameter approximately 150 nm). However, the UV-vis absorption spectroscopy, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) studies confirm the average particle size (QD) in the nanoaggregate to be 4.0 +/- 0.5 nm. The steady-state and time-resolved photoluminescence studies on the QDs further confirm preservation of electronic band structure of the QDs in the nanoaggregate. To study the nature of the nanoaggregate we have used small fluorescent probes, which are widely used as biomolecular ligands (2,6-p-toluidinonaphthalene sulfonate (TNS) and Oxazine 1), and found the pores of the aggregate to be hydrophobic in nature. The significantly large spectral overlap of the host quantum dots (donor) with that of the guest fluorescent probe Oxazine 1 (acceptor) allows us to carry out F?rster resonance energy transfer (FRET) studies to estimate average donor-acceptor distance in the nanostructure, found to be approximately 25 Angstrom. The quantum dot aggregate and the characterization techniques reported here could have implications in the future application of the QD-nanoaggregate as host of small ligand molecules of biological interest.  相似文献   

19.
Zeolite-intercalated semiconductor quantum dots (QDs) have long been proposed to give very high third-order nonlinear optical (3NLO) responses. However, measurements of their 3NLO responses have not been possible due to the lack of methods to prepare optically transparent QD-incorporating zeolite films supported on optically transparent substrates and to confine QDs only within zeolite interiors. We found that the zeolite-Y films grown on indium-tin-oxide-coated glass plates (Ygs) remain firmly bonded to the substrates during ion exchange with Pb2+ ions, drying, and formation of PbS QDs by treating Pb2+ ions with H2S. A series of Ygs encapsulating different numbers (n = 0, 8, 14, 23, and 33) of PbS in a unit cell [(PbS)n-Yg] were prepared. The PbS QDs were expelled by adsorbed moisture to the external surfaces, and the expelled QDs formed large QDs. Coating of the (PbS)n-Ygs with octadecyltrimethoxysilane results in effective confinement of the QDs within the internal pores. The zeolite-encapsulated PbS QDs showed remarkably high 3NLO activities at 532 and 1064 nm which are unparalleled by other PbS QDs dispersed in other matrixes.  相似文献   

20.
CdS nanoparticles on the surface of single-walled carbon nanotubes (SWNTs) were templated and stabilized through the initial attachment of 1 --> 3 C-branched amide-based dendrons and were both photophysically and morphologically characterized. The CdS clusters were shown to be ca. 1.4 nm in diameter as calculated from their optical absorption spectra and exhibited reduced fluorescence emission intensity at 434 nm compared to that of CdS quantum dots stabilized by untethered dendrons due to partial emission quenching by the SWNT. Unchanged UV absorption behavior of these materials indicated that they are stable > 90 days at 25 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号