首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paul RL 《The Analyst》2005,130(1):99-103
An instrument for cold neutron prompt gamma-ray activation analysis (PGAA), located at the NIST Center for Neutron Research (NCNR), has proven useful for the measurement of boron in a variety of materials. Neutrons, moderated by passage through liquid hydrogen at 20 K, pass through a (58)Ni coated guide to the PGAA station in the cold neutron guide hall of the NCNR. The thermal equivalent neutron fluence rate at the sample position is 9 x 10(8) cm(-2) s(-1). Prompt gamma rays are measured by a cadmium- and lead-shielded high-purity germanium detector. The instrument has been used to measure boron mass fractions in minerals, in NIST SRM 2175 (Refractory Alloy MP-35-N) for certification of boron, and most recently in semiconductor-grade silicon. The limit of detection for boron in many materials is <10 ng g(-1).  相似文献   

2.
A new instrument for cold neutron prompt gamma-ray activation analysis (CNPGAA) is being designed and constructed at the NIST Center for Neutron Research (NCNR). The new instrument is expected to have lower gamma-ray and neutron background and better detection limits for most elements than the current cold neutron PGAA instrument. Other advantages over the current facility will include the ability to analyze larger samples and greater overall measurement capability due to the addition of scanning stages, cryostats, and sample changers.  相似文献   

3.
Analytical bias due to neutron scattering and absorption in cold neutron prompt gamma-ray activation analysis (CNPGAA) is largely eliminated for homogeneous samples when element ratios are measured. Application of sensitivity ratios (measured relative to titanium) to the multielement analysis of the Allende meteorite increases both the speed and accuracy of the measurement. Greater measurement accuracy is achieved for some samples when ratios of element concentrations are reported. Problems are encountered when applying the ratio method to measurement of elements which deviate from 1/v behavior, and when gamma-ray attenuation or sample heterogeneity are significant.  相似文献   

4.
Major levels of boron in borosilicate glasses have been determined nondestructively by neutron activation analysis. In contrast to chemical methods for determining boron as a major component, the described nuclear method has few interferences and does not require chemical separation of boron prior to its quantitation. The effects of neutron self-shielding by boron (1 to 8% by weight) are examined, minimized by dilution of powdered samples with high purity graphite, and circumvented by comparative analyses. Results of the analysis of a series of glasses with increasing boron composition are 1.150±.005% and 7.766±.035% for the low and high members of the series. Accuracy of these results depends upon comparative analyses with the certified Standard Reference Material, SRM 93a (3.89±0.02% B). Once analyzed, the glasses are useful as secondary standards for alpha track counting, and also ion and electron microprobe analyses of glasses.  相似文献   

5.
An examination of the literature concerning the determination of cadmium by Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) has been conducted. In-vivo activation analysis of the liver and kidney is the most common application reported and is briefly reviewed here. This review will concentrate on the determination of cadmium in in-vitro systems. These include a number of different complex matrices such as geological, environmental and biological materials, as well as water, sediments, foods and construction material. Nuclear reactors, accelerators, and radioisotopes have all been used as neutron sources with varying degrees of sensitivity.  相似文献   

6.
Non-destructive multi-element determination in environmental samples by neutron-induced prompt -ray analysis (PGA) has been investigated. Comparative standardization for the elements including H, B, C, N, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Co, Cd, Sm, Gd, Hg by PGA has been carried out using the cold and thermal guided neutron beams of JRR-3M reactor and then several environmental reference materials have been analyzed. Accuracy and precision of better than 20% were found for these elemental analyses except for H, C, N and Cl in biological samples. Detection limits in various environmental matrices were 25 to 820 ng/g for B, Cd, Sm and Gd, 1.1 to 820 g/g for H, Na, S, Cl, K, Ti, Mn, Co and Hg, and 0.031 to 10% for C, N, Mg, Al, Si, P, Ca and Fe. The present method is being applied to environmental studies of post war Persian Gulf together with INAA and ICP-MS.  相似文献   

7.
8.
A neutron beam line for multiple prompt gamma-ray analysis was constructed at the Japan Atomic Energy Agency. A detector system for the MPGA was constructed at the C2-3-2 beam line in January 2005. It comprised eight (upgraded in March 2007) clover Ge detectors with a BGO Compton suppressor. High efficiency detector system provides an advantage in terms of the detection limit of MPGA when compared to the result of PGA. The supermirror neutron bender was improved and a supermirror neutron guide was installed upstream of the sample position.  相似文献   

9.
Summary The thermal neutron prompt gamma-ray activation analysis (PGAA) facility, operated by the US Food and Drug Administration and National Institute of Standards and Technology Center for Neutron Research, has been redesigned to lower background radiation levels and improved analytical capabilities. Analysis of 22 element standards and food and botanical certified reference materials revealed significant sensitivity increases and lower limits of detection for H, B, C, N, Na, Al, P, S, Cl, K, Ca, Fe, and Cd. Mass fractions for these elements, as well as Mg, Al, Si, Ti, Mn, Fe, Cu, I, Zn, Sm, and Gd, were determined for 6 dietary supplements.  相似文献   

10.
Prompt gamma-ray neutron activation analysis (PGNAA) using the internal mono-standard method was tested for its applicability to analyzing large solid samples including irregularly shaped meteorite samples. For evaluating the accuracy and precision of the method, large quantities of the Geological Survey of Japan standardized rock powders (JB-1a, JG-1a, and JP-1) were analyzed and 12 elements (B, Na, Mg, Al, Cl, K, Ca, Ti, Mn, Fe, Sm, and Gd) were determined by using Si as an internal standard element. Analytical results were mostly in agreement with literature values within 10 %. The precision of the method was also shown to be within 10 % (1σ) for most of these elements. The analytical procedure was then applied to four stony meteorites (Allende, Kimble County, Leedey, Lake Labyrinth) and four iron meteorites (Canyon Diablo, Toluca (Mexico), Toluca (Xiquipilco), Squaw Creek) consisting of large chunks or single slabs. For stony meteorites, major elements (Mg, Al, Si, S, Ca, and Ni), minor elements (Na and Mn) and trace element (B, Cl, K, Ti, Co, and Sm) were determined with adequate accuracy. For iron meteorites, results for the Co and Ni mass fractions determined are all consistent with corresponding literature values. After the analysis, it was confirmed that the residual radioactivity remaining in the sample after PGNAA was very low and decreased down to the background level. This study shows that PGNAA with the internal mono-standard method is highly practical for determining the elemental composition of large, irregularly shaped solid samples including meteorites.  相似文献   

11.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇔ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system [M+=Li+, K+, Rb+, Cs+; L = p-tert-butylcalix[4]arene-tetrakis (N, N-dimethylthioacetamide); aq = aqueous phase, nb = nitrobenzene phase] were evaluated. Furthermore, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order Cs+<Rb+<K+<Li+<Na+.  相似文献   

12.
We present chemometric study to identify the provenance of agricultural product, beef. Combination of instrumental neutron activation analysis (INAA) and prompt gamma-ray analysis (k 0-PGA) were performed to determine 10 elements, C, H, N, S, Sm, Br, Mg, Na, K, Cl, nondestructively. We measured elemental profiles in beef samples produced from different districts in Japan, Australia and USA. In the case of PGA, k 0-method was employed to determine the elemental concentrations. There was a difference in elemental profiles between Japanese black cattle beef and that produced in USA through principal component analysis (PCA). However, Holstein beef of Japan and that of Australia was not sufficiently grouped by the PCA modeling with the elemental data set. This is the first study to identify the provenance of beef through elemental analysis.  相似文献   

13.
A novel approach is implemented to alleviate some persistent problems in neutron capture prompt gamma activation analysis (PGAA). Detection sensitivities of PGAA are often restricted by the following factors: poor signal to noise ratios, interferences from background signals, and, in some cases, overlapping energy lines from different origins, namely ultra short-lived decay lines interfering with prompt decay. Timing the gamma-ray acquisition with the actual capture events using a pulsed beam of cold neutrons allows discrimination between prompt and delayed emissions from a sample source as well as against background events. Coincidence gating selects the prompt gamma-ray emissions. Contributions of background capture gamma-rays are suppressed because of different flight times of neutrons to the sources of background radiation, providing a reduction in direct gamma-ray interferences. Anti-coincidence gating allows measurement of only decay radiation that originates from short-lived activated states of the nuclides after capture. Spectra of decaying nuclides are free of interfering prompt activities, as well as have lower continuum background from Compton scattering of high-energy prompt gamma-rays in the detector. The measurements provide the opportunity to use ultra-short half-life nuclides for analytical purposes, no sample transfer times are lost, and repetitive activation and counting cycles are achieved with the use of pulsed neutron beams.  相似文献   

14.
The restart of the recently upgraded research reactor in Budapest is foreseen at the end of this year. A number of fast, thermal and cold neutron beams will serve for research, industrial and educational activities. One of the cold neutron guide end positions will be utilized for neutron capture prompt gamma-ray activation analysis (PGAA). Further development of the PGAA method as well as new applications in environmental research, biology and medicine are planned.  相似文献   

15.
The effects of neutron scattering by hydrogen within targets for cold neutron prompt -ray activation analysis (CNPGAA) have been characterized. For most targets studied, the probability for neutron absorption, and hence CNPGAA sensitivities (counts·s–1·mg–1), decrease with increasing H content and with target thickness. Comparisons with results from thermal neutron PGAA indicate that the effects of cold neutron scattering differ from those of thermal neutron scattering. CNPGAA sensitivities for l/v nuclides show similar sensitivity decreases, while Sm sensitivities show smaller decreases.  相似文献   

16.
Prompt gamma activation analysis (PGAA) is a nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. The principle of PGAA technique is based on detection of captured gamma-ray emitted from an analytical sample while being irradiated with neutrons. Use of a cold neutron beam guide greatly reduces the gamma-ray background at the analytical sample while maintaining a neutron capture rate is comparable to that of standard thermal neutron PGAA. A new cold neutron induced prompt gamma activation analysis (CN-PGAA) system has been under construction since April of 2009 at the HANARO Cold Neutron Building (KAERI, Republic of KOREA). In this study, the Compton suppression factor of the CN-PGAA system was estimated to be 5.5 using a 60Co radioactive source in conjunction with the MCNPX simulations. Several parameters of the CN-PGAA system were studied to estimate and optimize the performance of the system: scintillation material in the guarded detector of a Compton suppression spectrometer (CSS); the relative positions of the HPGe detector and annular detector; and the distance between the HPGe detector and back catcher BGO detectors of the CSS. In addition, the neutron ray-trace simulation package, McStas, was adopted to predict the neutron flux and wavelength distribution at the end of the cold neutron beam guide. These results served as input for the MCNPX simulation of the CN-PGAA system.  相似文献   

17.
In this study an investigation into the applicability of the absolute method in Prompt Gamma-ray Neutron Activation Analysis (PGNAA) was undertaken. Although the system parameters are adequately characterized, the scatter in nuclear data for a number of elements is significant. For our particular experimental set up the K-factors were calculated for a number of elements using both Au and Fe as monostandards. A comparison was made between the calculated and experimentally determined K-factors and from this comparison the feasibility of the absolute method in neutron prompt gamma-rays can be realized for a number of elements.  相似文献   

18.
Neutron induced prompt -ray analysis (PGA) and instrumental neutron activation analysis (INAA) have been applied to the sediments collected from the Tama River estuary in Tokyo, Japan. The vertical distribution of 24 elements in the sediments was determined and the factors goveming the vertical profiles have been discussed. Major elements are distributed depending on weathering that proceeds much with increasing depth. Cadmium is highly concentrated in the deeper layer where sulphate ion is reduced to hydrogen sulphide. The distribution of several rare earth elements is also presented  相似文献   

19.
20.
A low cost neutron capture prompt gamma activation analysis facility has been constructed at The University of Michigan's Pheonix Memorial Laboratory. Although the neutron beam used has a fairly large epithermal component (Cd ratio 7.1), background levels are low enough to result in satisfactory measurement of over 16 different elements. For the elements of greatest sensitivity (samarium, boron, gadolinium, and cadmium) minimum detectable levels of 3.6·10−5 to 1.4·10−5 gram for a one hour measurement are possible. The fast neutrons incident to the detector were found to be minimal. Estimates of up to 3 years of continuous operation before measurable damage is expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号