首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Lightweight conductive polymers are considered for lightning strike mitigation in composites by synthesizing intrinsically conductive polymers (ICPs) and by the inclusion of conductive fillers in insulating matrices. Conductive films based on polyaniline (PANI) and graphene have been developed to improve through‐thickness conductivity of polymer composites. The result shows that the conductivity of PANI enhanced by blending polyvinylpyrrolidone (PVP) and PANI in 3:1 ratio. Conductive composite thin films are prepared by dispersing graphene in PANI. The conductivity of composite films was found to increase by 40× at 20 wt% of graphene inclusion compared with PVP and PANI blend. Fourier‐transform‐infrared (FTIR) spectra confirmed in situ polymerization of the polymer blend. The inclusion of graphene also exhibits an increase in Tg by 21°C. Graphene additions also showed an increase in thermal stability by approximately 148°C in the composite films. The mechanical result obtained from DMA shows that inclusion of graphene increases the tensile strength by 48% at 20 wt% of graphene reinforcement. A thin, highly conductive surface that is compatible with a composite resin system can enhance the surface conductivity of composites, improving its lightning strike mitigation capabilities.  相似文献   

2.
Water-dispersible nanoparticles of polyaniline (PANI) have been conveniently synthesized via the interfacial polymerization route using chemical oxidative polymerization of aniline (ANI) with ammonium peroxodisulfate in aqueous poly(styrenesulfonic acid) (PSS). Various molar feed ratios of ANI/PSS were employed to attain highly dispersible PANI nanoparticles. PSS was used as an anionic dopant and as a template for the formation of PANI nanoparticles. The dispersed PANI nanoparticles were characterized using a Zetasizer, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS). Functional group analysis and the thermal stability of PANI particle dispersions were examined using FT-IR, UV-visible spectroscopy, and thermogravimetry analysis. The particle size of PANI-PSS nanoparticles was controlled by tuning the molar feed ratio of ANI/PSS. A uniform size distribution was obtained with the particle size of 5-15 nm for ANI/PSS ratios less than 1/1.  相似文献   

3.
We prepared PANI/tetradecanol/MWNTs composites via in-situ polymerization. DSC results indicated that the composites are good form-stable phase change materials (PCMs) with large phase change enthalpy of 115 J g−1. The MWNTs were randomly dispersed in the composites and significantly enhanced the thermal conductivity of the PCMs from 0.33 to 0.43 W m−1 K−1. The form-stable PCMs won’t liquefy even it is heated at 80°C, so that the MWNTs were fixed in the composite and the phase separation of the MWNTs from PANI/tetradecanol/MWNTs composites won’t occur.  相似文献   

4.
Aniline was polymerized in the presence of poly(vinyl chloride) (PVC) powders in hydrochloric acid to in situ prepare poly(vinyl chloride)/polyaniline (PVC/PANI) composite particles. UV‐vis spectra and FT‐IR spectra indicate PANI in PVC/PANI composite particles possessed a higher oxidation state with decreased aniline content in reactants. Both conductivity and impact strength of the dodecylbenzenesulfonic acid (DBSA) doped PANI composites (PVC/PANI‐DBSA), which were compression molded from the in situ prepared PVC/PANI particles, increase with the pressing temperature and decrease with the increase of DBSA doped PANI (PANI‐DBSA) loading. An excellent electric conductivity of 5.06 × 10?2 S/cm and impact strength of 0.518 KJ/m2 could be achieved for the in situ synthesized and subsequently compression molded composite. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Colloidal dispersions of noble metals in synthetic polymers are prepared by reduction with alcohol. Reflux of a solution of rhodium(III) chloride and poly(vinyl alcohol) (PVA) in a methanol-water mixed solvent under argon or air for 4 hr gives a homogeneous solution of colloidal dispersion of rhodium (Rh-PVA-MeOH/H2O). The particle size of metallic rhodium is distributed n a narrow range of 30-70 Å, and the average diameter is 40 A. The formation of colloidal rhodium proceeds through three steps: coordination of poly(vinyl alcohol) to rhodium(III) ion, reduction with methanol to form small particles (8 Å in diameter), and growth of the small particle to large particle (40 Å in diameter). Polyvinylpyrrolidone (PVP) and poly(methyl vinyl ether) (PMVE) can be used in place of poly(vinyl alcohol) and result in colloidal dispersions, respectively, similar to Rh-PVA-MeOH/H2O. Colloidal dispersions in nonaqueous solvent can be prepared by using ethanol instead of methanol-water (Rh-PVP-EtOH) and by using methanol instead of methanol-water, with addition of small amount of methanol solution of sodium hydroxide (Rh-PVP-MeOH/NaOH). The average diameters of rhodium particles in Rh-PVP-EtOH and Rh-PVP-MeOH/NaOH are 22 and 9 Å, respectively. The colloidal dispersions of palladium, silver, osmium, iridium, platinum, and gold in aqueous or nonaqueous solvent are prepared by using polyvinylpyrrolidone. The colloidal dispersions are very stable even under air for 20 days. Those of rhodium, palladium, and platinum are effective catalysts for hydrogenation of olefins at 30°C under an atmospheric hydrogen pressure. The colloidal dispersion of palladium catalyzes highly selective hydrogenation of diene and dienoate to monoene and monoenoate, respectively.  相似文献   

6.
Conductive polyaniline/tungsten carbide (PANI/TC) composite was synthesized via polymerization of the aniline monomer by (NH4)2S2O8/H2SO4 oxidant system in the presence of an aqueous suspension of TC. The structure, thermal stability and conductivity of PANI/TC composite were studied and the results were also compared with the pure PANI. The results showed that there was a strong interaction between the TC particles and PANI molecular chains. The crystalline structure of TC remained undisturbed upon with interaction with PANI chains. The thermal stability of PANI/TC composite was better than that of pure PANI. The direct current conductivity values of PANI/TC composite decreased slowly as the temperature increased from 25 to 165°C and PANI/TC composite exhibited significantly higher conductivity than the pure PANI.  相似文献   

7.
In this communication, polyaniline/CdSe quantum dots (PANI/Q-CdSe) composite was successfully synthesized via in situ ultrasonically assisted dynamic inverse emulsion polymerization. The synthesized PANI-coated Q-CdSe composite was characterized by field emission transmission electron microscopy showed that the CdSe quantum dots have an average size of around ca. 5 nm were dispersed in the PANI matrix. X-ray diffraction, Fourier transform infrared spectrum (FT-IR) and UV-visible spectrum were used to characterize the structure of the obtained PANI/Q-CdSe composite. FT-IR spectra indicated that the polymer was highly doped and existed in conducting emeraldine salt form. The obtained PANI/Q-CdSe composite showed significant improvement in the thermal behavior as indicated by TGA thermograph. The presented dynamic polymerization process is very fast and produces stable colloidal dispersion. This approach provides a one-step, simple, general, and inexpensive method for the preparation of PANI/Q-CdSe composite.  相似文献   

8.
The charge transport properties of thin films prepared from colloidal dispersion of polyaniline stabilized by poly(N‐vinylpyrrolidone) (PANI/PVP) have been investigated. The electrical characterization of coplanar device comprising of gold electrodes and PANI/PVP film deposited by spin coating served to gain insights into the contact and bulk resistance. The films prepared from PANI/PVP colloidal dispersion show high stability over a large temperature range. Temperature dependent measurements in the range from 90 to 350 K reveal that the charge transport can be described by a three‐dimensional variable‐range hopping mechanism as the dominant mode in the films. The stability of the films cast from dispersion within a large temperature range opens the possibility of the application as a polymer semiconductor layer in sensors and charge‐transport interlayer in organic solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1710–1716  相似文献   

9.

Electrochemical polymerization of azure B from sulfuric acid solution was carried out by using cyclic voltammetry. The electrolytic solution consisted of 5.0 mmol · dm?3 azure B and 0.3 mol · dm?3 H2SO4. The temperature for polymerization was controlled at 20°C. A blue film, i.e., poly(azure B) was formed on a platinum foil and had a electrochemical reversibility, stability and a fast charge transfer ability in the 0.5 mol · dm?3 Na2SO4 with pH ≤4.0 solution. The currents of both anodic and cathodic peaks are proportional to υ1/2 at the scan rate (υ) region of 25 and 600 mV · s?1 on the cyclic voltammograms. The conductivity of poly(azure B) is 2.8×10?6 S · cm?1 at 20°C. The UV‐visible spectrum and Raman spectrum of the polymer are different from those of the monomer. A possible polymerization mechanism of azure B was also proposed.  相似文献   

10.
Radical polymerization of N-vinylpyrrolidone along poly(methacrylic acid) templates of high syndiotatic content was followed dilatometrically in dimethylformamide, which was used as solvent. The effects of template concentration, template molar mass, and temperature on polymerization rate and average molar mass of the formed polyvinylpyrrolidone (PVP) were examined. Template concentrations were varied around the critical concentration for homogeneous segmental distribution, C*. Below this concentration, template coils can act as separate microreactors wherein growing PVP radicals exhibit maximum rate enhancement, i. e., relative rate νR = νR,max. In the free solution, blank polymerization occurs, i. e., νR = 1. Consequently, νR can be approximated by the equation νR = ?νR,max + (1 ? ?), where ? represents the volume fraction occupied by template coils. The slight increase in UR and PVP molar mass with the template chain length is supposed to be caused by the influence of translational diffusion on the termination step. Over the investigated temperature range of 50–70°C, the activation energy and entropy were almost identical for blank and template polymerization. An expected decrease of ΔE and ΔS in template systems is supposed to be compensated by the effects of desolvation of the template macromolecules during the propagation step.  相似文献   

11.
The paper presents a study regarding the possibility of obtaining zinc and magnesium ferrites starting from poly(vinyl alcohol)–metal nitrates solutions. By controlled heating of these solutions, a redox interaction takes place leading to the formation of some coordination compounds of the involved metal cations with the oxidation products of poly(vinyl alcohol) (PVA). FT-IR spectroscopy has evidenced the disappearance of the NO 3 ? anions at 140 °C due to the redox interaction with PVA. Thermal analysis evidenced the difference in the interaction of the individual metal nitrates and PVA and thus the particularity of the preparation of each ferrite. The thermal decomposition of the synthesized precursors was finished below 400 °C as resulting from both thermal analysis and FT-IR spectroscopy. The obtained ferrites powders consist of fine nanoparticle with diameters ranging from 10 to 30 nm for the powders annealed at 500 °C, as resulting from the SEM images. The specific surface area of the powders obtained at 500 °C was 32.2 m2 g?1 for ZnFe2O4 and 21.7 m2 g?1 for MgFe2O4, characteristic of nanoscaled powders. The increasing of the annealing temperature at 1,000 °C leads to sintering of both ferrites, more advanced in the case of zinc ferrite.  相似文献   

12.
Block polymerization of glycolide (GA) and ϵ-caprolactone (ϵ-CL) has been initiated with aluminum alkoxides, such as Al(OiPr)3 and Et2AlOCH2X (where X = -CH2-Br and -CH2O-C(O)-C(Me)=CH2), in THF at 40°C. Structure and composition of block copolyesters have been characterized with respect to the molecular weight by NMR spectroscopy and thermal analysis. Copolymerization is typically living, so that block copolyesters have been synthesized with predictable molecular weight and composition. The inherent insolubility of polyglycolide block is responsible for the heterogeneity of the polymerization medium and formation of stable, non-aqueous colloidal dispersions. This effect is especially pronounced at high GA/ϵ-CL molar ratios. Colloidal dispersions have been analyzed by transmission electron microscopy (TEM) and photocorrelation spectroscopy (PCS).  相似文献   

13.
Summary: This work evaluated the influence of the synthesis temperature on the polyaniline (PANI) properties obtained by in-situ polymerization onto a poly (terephthalate) (PET) substrate. The residual mass of these syntheses was dried under vacuum, obtaining PANI powders for each temperature investigated. PANI/PET thin films and PANI powders were characterized by atomic force microscopy (AFM), field emission scanning electron microscopy (FEG-SEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis) and four-point probe techniques. The UV-Vis results showed that the synthesized PANI presents the emeraldine oxidation state. By means of XRD technique, it was possible to verify that the PANI powders present crystalline form. The AFM and FEG-SEM techniques showed that the decrease in PANI/PET and PANI powders electrical conductivity with increasing of the synthesis temperature is related to the polymeric aggregates morphology.  相似文献   

14.
Acrylic acid was first electropolymerized on the surface of a gold electrode. Then, polyaniline (PANI) was electrodeposited on the poly(acrylic acid) (PAA) network to give a PANI–PAA composite film. Scanning electron microscopy and electrochemical studies confirmed the formation of PANI–PAA composite which exhibited excellent electroactivity over a wide pH range. The electro-oxidation of ascorbic acid (AA) was studied in detail. The modified electrode exhibits significantly reduced oxidation overpotential. The response towards AA is linear in the range 1.0 μM to 9.3 mM (R?=?0.9997, n?=?33) at a potential of 0.1 V (vs. SCE). The sensitivity is 207 μA mM-1 cm-2, and the detection limit is 1.0 μM (S/N?=?3). Interferences by uric acid and dopamine are negligible. The electrode thus enables sensitive and selective determination of AA, with a performance superior to many other PANI–based ascorbate sensors.  相似文献   

15.
Reduced graphene oxide/sulfur/polyaniline (referred to RGO/S/PANI) composite was self-assembled through in situ synthesis and used to investigate the electrochemical properties of lithium/sulfur cells. The RGO/S/PANI composite possessed 809.3/801.9 mAh g?1 of initial charge/discharge capacities, higher than 588.3/588.2 mAh g?1 for reduced graphene oxide/sulfur (referred to RGO/S) and 681.4/669.9 mAh g?1 for sulfur/polyaniline (referred to S/PANI) at similar conditions. The RGO/S/PANI composite obtained 400 mAh g?1 at 2 C and good reversible capacities of 605.5 and 600.8 mAh g?1 at 100th charge/discharge cycle at 0.1 C, in comparison with low electrochemical performance of RGO/S and S/PANI. The improved properties could be attributed to the collaboration of RGO and PANI. Co-generation of RGO and sulfur acted as seeds for their depositions, stimulated their uniform distributions, and restricted the agglomeration of sulfur particles in situ synthesis. Polyaniline coated RGO/S and stabilized the nanostructure of RGO/S/PANI in repeated charge/discharge cycles. In addition, RGO and PANI provided many electron channels to enhance sulfur conductivity and sufficient void space for sulfur swelling during charge/discharge cycles.  相似文献   

16.
Cellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) reinforced with CNF and CNF/PANI were obtained by casting/evaporation method. TG analyses showed that coating CNF with PANI resulted in a material with better thermal stability since PANI acted as a protective barrier against cellulose degradation. Nanocomposites and natural rubber showed the same thermal profiles to 200 °C, partly due to the relatively lower amount of CNF/PANI added as compared to conventional composites. On the other hand, mechanical properties of natural rubber were significantly improved with nanofibrils incorporation, i.e., Young’s modulus and tensile strength were higher for NR/CNF than NR/CNF/PANI nanocomposites. The electrical conductivity of natural rubber increased five orders of magnitude for NR with the addition of 10 mass% CNF/PANI. A partial PANI dedoping might be responsible for the low electrical conductivity of the nanocomposites.  相似文献   

17.
Novel nanophase hexagonal structured polyaniline (PANI) and poly(2,5‐dimethoxyanilines) (PDMA) were synthesized by oxidative polymerization involving the respective anilines and a mixture of ferric chloride and ammonium persulfate. The morphological, spectral and electrochemical characteristics of the polymers were determined from the results of SEM, FTIR, UV‐vis, TGA and cyclic voltammetry experiments. The hexagonal PANI and PDMA nanorods (15–200 nm diameter) exhibited very good thermal stabilities, losing only 10% of their weight on heating to 400 °C. Electrochemical data indicated a pernigraniline state of the polymers with formal potential, E°′, values of 394±6 mV and 400±1 mV, for PANI (conductance, C=0.37×10?3 S) and PDMA (conductance, C=2.02×10?3 S), respectively. The pernigraniline state was confirmed by sharp FTIR pernigraniline quinoidic peaks (PANI: 1414 cm?1; PDMA: 1157 cm?1), and UV‐vis absorption maxima at 340–370 nm (PANI) and 450–650 nm (PDMA) which are characteristic of charge transfer excitons of the quinoid structures of pernigraniline.  相似文献   

18.
聚乙烯醇/聚乙烯吡咯烷酮碱性复合膜的制备及其性能   总被引:1,自引:0,他引:1  
通过在不同浓度KOH溶液中进行掺杂,制备出了聚乙烯醇/聚乙烯吡咯烷酮(PVA/PVP)碱性聚合物电解质膜.详尽考察了膜的组成、微观结构、热稳定性、离子电导率和甲醇吸收率.结果表明,PVA与PVP两者具有较好的相容性,当m(PVA)∶m(PVP)=1∶0.5时,膜断面致密、均匀,未发生大尺度相分离.PVP的混入可以极大提高复合膜的电导率和热稳定性.当m(PVA)∶m(PVP)=1∶1时,复合膜的电导率可达2.01×10-3 S.cm-1.PVA/PVP/KOH膜的甲醇吸收率随温度的升高没有明显变化,100℃时其甲醇吸收率仅为同条件下Nafion 115膜的1/4.这表明该复合膜有望作为一种新型的碱性直接甲醇燃料电池用固体电解质膜且可提高膜的使用温度.  相似文献   

19.
Cu nanoparticles of well-defined size and stability were synthesized with the aid of a double-template method. The templates consisted of sodium dodecyl sulfate (SDS) aggregates combined with and wrapped by poly(vinylpyrrolidone) (PVP) chains. Copper sulfate was reduced within the templates resulting in multicrystalline Cu nanoparticles. The size of the particles was uniform. They were capped by PVP–SDS complexes and the shape turned out to be non-spherical. PVP used in the experiments has an average molecular weight of 40,000. In this case, the particle dimensions were essentially determined by the chosen concentration of SDS in the reaction solution. No oxidation of the as-grown copper particles was detected even in the absence of inert gas protection during the synthesis process. When exposed to air at room temperature, Cu nanoparticles capped by PVP–SDS complexes showed much better resistance to oxidation than those without the capping agents. Furthermore, the steric and screening effect of the capping agents permitted the preparation of uniform colloidal dispersions stable over months. The material obtained by this double-template method was found to be very sensitive to the synthesis temperature. At synthesis temperatures above 40 °C, CuO instead of Cu was obtained.  相似文献   

20.
分散聚合水基聚苯胺乳胶微球制备与表征   总被引:7,自引:0,他引:7  
水溶性空间稳定剂聚乙烯吡咯烷酮(PVP)存在时,采用分散聚合制备水溶性单分散的聚苯胺(PAn)乳胶粒子,采用透射电子显微镜(TEM)观察粒子形态及尺寸;利用紫外-可见吸收光谱对胶体分散体系进行表征.实验结果表明,当PAn含量较少(w< 16.78%)时, PAn-PVP复合乳胶粒子呈米粒状;当PAn含量较大(w >23.22%)时, PAn-PVP复合乳胶粒子呈球形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号