共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Thermal analysis methods are well-established techniques in research laboratories of pharmaceutical industry. The robustness
and sensitivity of instrumentation, the introduction of automation and of reliable software according to the industrial needs
widened considerably the areas of applications in the last decade. Calibration of instruments and validation of results follow
the state of the art of cGMP as for other analytical techniques. Thermal analysis techniques are especially useful for the
study of the behavior of the poly-phasic systems drug substances and excipients and find a unique place for new delivery systems.
Since change of temperature and moisture occur by processing and storage, changes of the solid state may have a considerable
effect on activity, toxicity and stability of compounds. Current requirements of the International Conference of Harmonisation
for the characterization and the quantitation of polymorphism in new entities re-enforce the position of thermal analysis
techniques. This challenging task needs the use of complementary methods. Combined techniques and microcalorimetry demonstrate
their advantages. This article reviews the current use of thermal analysis and combined techniques in research and development
and in production. The advantage of commercially coupled techniques to thermogravimetry is emphasized with some examples.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
11.
12.
13.
14.
15.
苝类化合物具有大的共轭体系,易于进行结构修饰,可引入各种功能性基团,这种奇特结构赋予了苝类化合物优良的理化性质和特殊功能,在材料科学、超分子化学、生物、药学、医学等领域具有宽广的应用潜力,尤其在苝类有机光电材料已得到广泛的研究,取得了许多重要成就。尤其是近来越来越多的研究致力于开发苝类化合物其它可能的应用,已延伸到诸多领域,特别是相关生物医药的应用研究已成为近几年来异常活跃的新兴研究领域,引起广泛关注,进展迅速。本文结合课题组的研究工作,参考国内外近五年文献,首次系统地综述了苝类化合物在有机光电材料、纳米材料、生物医药光敏剂、生物荧光标记和成像、药物载体、人工诊断剂、人工离子受体和荧光分子探针等材料、生物、医药领域应用研究新进展。文中注重强化了化合物结构对苝类化合物性质和应用的影响。对未来苝类化合物研究与应用的发展趋势作了展望。 相似文献
16.
17.
Barbara Pacewska 《Journal of Thermal Analysis and Calorimetry》2017,128(1):1-14
This study investigates the most appropriate conditions to perform the proximate analysis (moisture, volatile matter, fixed carbon, and ash) of biomasses by thermogravimetry, focusing on providing better distinction for quantification of volatile and fixed carbon components. It was found, using a series of thermogravimetric methodologies, that heating rate and particle size are important factors to be taken into account, whereas temperature and carrier gas (type and flow rate) are critical to enable the proper quantification of volatiles and fixed carbon. In this case, the best condition was achieved by applying 600 °C and CO2 as carrier gas (instead of N2). It is the highlight of the proposal method regarding the conditions often applied for this purpose. Furthermore, this method has proved to be advantageous in three important aspects: A single measurement is enough for quantification of all properties, it can be performed in a short time (1 h 27 min) in comparison with methods performed in a muffle furnace, and it can be applied for different kinds of biomasses, from lignocellulosic to residues. The procedure of validation demonstrated the low uncertainty of the data obtained by this method and the low propagation of uncertainty when they were applied for the prediction of the high heating value of the related biomasses, which supports its applicability as an alternative to biomass characterization. 相似文献
18.
Prebiotic Oligosaccharides: Special Focus on Fructooligosaccharides,Its Biosynthesis and Bioactivity
Sudhir P. Singh Jyoti Singh Jadaun Lokesh K. Narnoliya Ashok Pandey 《Applied biochemistry and biotechnology》2017,181(2):613-626
MicroRNAs (miRNAs) are important nonprotein-coding genes involved in almost all biological processes during biotic and abiotic stresses in plants. To investigate the miRNA-mediated plant response to drought stress, two drought-tolerant (C-306 and NI-5439) and two drought-sensitive (HUW-468 and WL-711) wheat genotypes were exposed to 25 % PEG 6000 for 1, 12 and 24 h. Temporal expression patterns of 12 drought-responsive miRNAs and their corresponding nine targets were monitored by quantitative real-time PCR (qRT-PCR). The results showed differential expression of miRNAs and their targets with varying degree of upregulation and downregulation in drought-sensitive genotypes. Likewise, in drought-tolerant wheat genotypes, maximum accumulation of miR393a and miR397a was observed at 1 h of stress. In addition, nearly perfect negative correlation was observed in four miRNA and target pairs (miR164-NAC, miR168a-AGO, miR398-SOD and miR159a-MYB) across all the temporal period studied which could be a major player during drought response in wheat. We, for the first time, validated the presence of miR529a and miR1029 in wheat. These findings gives a clue for temporal and variety-specific differential regulation of miRNAs and their targets in wheat in response to osmotic shock and could help in defining the potential roles of miRNAs in plant adaptation to osmotic stress in future. 相似文献
19.
Tang Zhan Ren Yan Yang Li Zhang Tonglai Qiao Xiaojing Zhang Jianguo Zhou Zunning Zhao Fengqi Dang Yongzhan Xu Siyu Yi Jianhua 《中国化学》2011,29(3):411-414
The thermal decomposition kinetics of composite modified double‐base (CMDB) propellants with a series of contents of hexogeon (RDX) was investigated by using parameters of Teo, Ti, Tp, Tf, Tb, Ta, E, lg A and ΔH, which were obtained from using a CDR‐4P differential scanning calorimeter (DSC) and Perkin‐Elmer Pyris 1 thermogravimetric analyzer (TG) analyses with heating rates of 5, 10, 15 and 20 K/min. Reliable activation energy was calculated using Flynn‐Wall‐Ozawa method before analyzing the thermal decomposition mechanism. TG‐DTG curves were treated with Malek method in order to obtain the reaction mechanisms. The obtained results show that the thermal decomposition mechanisms with the conversion from 0.2 to 0.4 was f(α)?1/2α, and with the conversion from 0.5 to 0.7 was f(α)?(1/4)(1?α)[?ln(1?α)]?3. 相似文献
20.
旨在剖析祖仁教授主编的《高分子化学》第四版的教学思想和撰写特点,涉及章节、内容的选择和安排、逻辑思维和教学方法,以及一些技术术语等。同时也指出了新版教材的一些印刷错误等。 相似文献