首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The miscibility of blends of isotactic polypropylene and propylene-1-hexene (PH) copolymers with 11 and 21 mol% of 1-hexene (PH11 and PH21, respectively) has been studied theoretically and using DSC, DMA, and AFM techniques. Using experimental PVT data, the solubility parameter approach leads to a critical difference in 1-hexene content for melt miscibility of 17 mass% (~11 mol%) at 200 °C and 0.1 MPa. The theoretical window for miscibility is in close agreement with thermal properties of the blends. The glass transition (T g) of miscible blends (iPP/PH11 and PH11/PH21) decreases proportionally to the content of PH having the lowest T g, while immiscible blends (iPP/PH21) display invariable T g with blend composition. The same trend was extracted from the analysis of the β-relaxation by dynamic mechanical analysis. Room temperature AFM images of blends quenched from 200 °C into liquid nitrogen confirm phase segregation of iPP/PH21 in domains of 1–5 microns, while the AFM images of iPP/PH11 and PH11/PH21 lack any obvious signature of phase separation prior to crystallization.  相似文献   

2.
Electrical conductivity and percentage linear thermal expansion of the borosilicate glass (BSG) and simulated waste-loaded borosilicate glass (BSGW) were measured in the temperature range of 300–780 K and compared. Pronounced increase in electrical conductivity was observed around glass transition temperature (T g) of BSG and BSGW. The activation energy (E a) of electrical conduction determined from the measured data for BSG and BSGW is 0.961 ± 0.005 and 0.960 ± 0.005 eV, respectively. The % average linear thermal expansion of BSGW showed a slight decreasing trend compared with pristine BSG. The average coefficient of thermal expansion determined from dilatometry data is 12.87 ± 0.24 × 10?6 and 11.94 ± 0.23 × 10?6 K?1 for BSG and BSGW, respectively. The T g measured by dilatometry is 806 ± 24 K for BSG and 790 ± 23 K for BSGW, respectively. The T g measured by DTA was found to be 820 ± 7 and 805 ± 5 K for BSG and BSGW, respectively, for heating cycle. The T g values obtained from DSC measurements are 805 ± 5 and 803 ± 5 K for BSG and BSGW, respectively. The T g of BSGW showed a slight decrease compared with that of BSG. The values obtained by DSC examination also showed the lowering of T g values for the waste-loaded composition. The lowering of T g may be attributed to the interaction of glass-forming agents and simulated waste elements.  相似文献   

3.
A series of dihydroxyl telechelic poly(alkyl-phenylene oxide)s (1) have been synthesized by oxidative polymerization of alkylphenols with various aromatic diols using manganese or copper amine catalysts. The novel telechelic derivatives (1) were epoxidized with epichlorohydrin yielding a series of new epoxidized poly(alkyl-phenylene oxide)s (EPPO, 2) and the structures, properties were studied by nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and gel permeation chromatography (GPC). The 1:1 blends of diglycidyl ether of bisphenol-A (DGEBA) with EPPO resins were cured with three curing agents and the effects of chemical structure change on thermal property of the curing matrixes were discussed. Incorporation of EPPOs to DGEBA epoxy system resulted in a significant increase in its glass transition temperature (Tg), thermal stability and flame resistance. The Tg values and char yields arising from a DDM-cured epoxy resin are usually higher than those of dicyandiamide (DICY) or 2-methylimidazole (2-MI) analogues and the reactivity of epoxy blends with three curing agents presents an increase in the order of 2-MI, DDM and DICY. In general, the tetramethylbisphenol-A (TMBPA)-derived polymer exhibits the lowest Tg, char yield and dielectric constant among PPO derivatives whereas the biphenol polymers usually results in higher Tg and char yield due to its rigid rod structure.  相似文献   

4.
A series of new modified epoxy resin (EP) cured products were prepared from epoxidized soybean oil and commercial epoxy resin, with methyl nadic anhydride as curing agent and 1-methylimidazole as promoting agent. The thermal properties of the resins were characterized by DMA and TG; DSC was used to determine the curing process. Fourier transform infrared spectroscopy was utilized to investigate their molecular structures and scanning electron microscopy was used to observe the micro morphology of their impact fracture surfaces. Tensile and impact testing was employed to characterize the mechanical properties of the cured products. The combination of commercial EP with 20 wt% ESO resulted in a bioresin with the optimum set of properties: 130.5 °C T g, 396.9 °C T 50 %, 74.89 MPa tensile strength, and 48.86 kJ m?2 impact resistance.  相似文献   

5.
The nanocomposites of polyamide 6 (PA6)/poly(methyl methacrylate) (PMMA)/non-functionalized and functionalized [carboxylic acid (COOH) and hydroxyl (OH)] single wall carbon nanotubes (SWCNTs) were prepared in mass ratios of 79.5/19.5/1, 49.5/49.5/1, and 19.5/79.5/1 by melt–mixing method at 230 °C. The PA6/PMMA blends with mass ratios of 80/20, 50/50, and 20/80 served as references. The Fourier transform infrared analyses of nanocomposites showed the formation of hydrogen bond interactions among PA6, PMMA, and OH and COOH functional groups of SWCNTs. The nanocomposites and blends had higher thermal stability with respect to the PMMA. The differential scanning calorimeter (DSC) curves showed that the nanocomposites and blends exhibited two T g values at around 51 and 126 °C for PA6 and PMMA, respectively. About 20 °C early crystallization was observed in nanocomposites compared to the blends. The dynamic mechanical analysis (DMA) results suggested that among all the compositions of blends and nanocomposites, storage modulus (E′) was higher for PMMA-rich blends and nanocomposites. At 25 °C, the E′ values were higher for blends and nanocomposites compared to the neat PA6. The tan δ curves indicated that the more heterogeneity of the hybrid nature resulted in PA6/PMMA/SWCNTs-OH or SWCNTs-COOH with 79.5/19.5/1 mass ratio nanocomposites compared to the PA6/PMMA with 80/20 mass ratio blend. The higher T g values of PA6 and PMMA were observed in DMA studies compared to the DSC studies for PA6 and PMMA as neat and in blends and nanocomposites. The significant improvements in crystallization of nanocomposites were considered resulting from achieving better compatibility among the polymer components and carbon nanotubes.  相似文献   

6.
Multi-walled carbon nanotubes (MWCNT) have been used as fillers to improve thermal properties such as glass transition temperature (T g) of epoxy materials. In this work, nanocomposites based on diglycidyl ether of bisphenol A resin and triethylenetetramine (TETA) were prepared by a three-roll mill process with TETA-functionalized (MWCNT–COTETA) and neat MWCNT. Thermogravimetric analysis of the nanofillers showed that in the case of MWCNT–COTETA, there is a 15 % mass loss that can be attributed to –COTETA and residual oxygen-containing functional groups. The influence of chemical modification on the behavior of the glass T g was evaluated by dynamic scanning calorimetry. The MWCNT–COTETA allowed a ~20 °C reproducible increase of T g in concentrations in the range of 0.5–1.0 mass%. Furthermore, images obtained by scanning electron microscopy were used to investigate the morphology of the polymer matrix and its interfaces. The quality of the dispersion and interaction of the nanotubes in the epoxy matrix was assessed from the images. Both the neat epoxy and the nanocomposite with MWCNT showed low thermal shrinkage upon curing.  相似文献   

7.
Two bulk samples of one and the same or of different amorphous polymers were brought into contact and held for a chosen period of time at a constant healing temperature (T) over the interval of T from below the bulk glass transition temperature (T g bulk) by ~50 °C to above T g bulk by ~10 °C. As formed adhesive joints were shear-fractured in tension at room temperature, and lap-shear strength (σ) was measured as a function of T. It has been found that σ develops with T as logσ?~?1/T both at symmetric and asymmetric interfaces of polystyrene, poly (methyl methacrylate) and poly (2,6-dimethyl-1,4-phenylene oxide). This behaviour implies that there is no discontinuity in the evolution of σ when going through T g bulk, and that this process is controlled by one and the same diffusion mechanism both below and above T g bulk. The results obtained indicate that the contact layer of the polymers investigated is in the viscoelastic state at T well below T g bulk and support the concept of a decrease in the T g of a near-surface layer with respect to T g bulk.  相似文献   

8.
Characterizations were carried out to study on a new plasticized solid polymer electrolyte that was composed of blends of poly(vinyl chloride) (PVC), liquid 50% epoxidized natural rubber (LENR50), ethylene carbonate, and polypropylene carbonate. This freestanding solid polymer electrolyte (SPE) was successfully prepared by solution casting technique. Further analysis and characterizations were carried out by using scanning electron microscopy (SEM), X-ray diffraction, differential scanning calorimeter (DSC), Fourier transform infrared (ATR-FTIR), and impedance spectroscopy (EIS). The SEM results show that the morphologies of SPEs are compatible with good homogeneity. No agglomeration was observed. However, upon addition of salt, formation of micropores occurred. It is worth to note that micropores improve the mobility of ions in the SPE system, thus increased the ionic conductivity whereas the crystallinity analysis for SPEs indicates that the LiClO4 salt is well complexed in the plasticized PVC-LENR50 as no sharp crystallinity peak was observed for 5–15% wt. LiClO4. This implies that LiClO4 salt interacts with polymer host as more bonds are form via coordination bonding. In DSC study, it is found that the glass temperature (T g) increased with the concentration of LiClO4. The lowest T g was obtained at 41.6 °C when incorporated with 15% wt. LiClO4. The features of complexation in the electrolyte matrix were studied using ATR-FTIR at the peaks of C=O, C–O–C, and C–Cl. In EIS analysis, the highest ionic conductivity obtained was 1.20?×?10?3 S cm?1 at 15% wt. LiClO4 at 353 K.  相似文献   

9.
The glass transition behavior in athermal blends of poly(α‐methyl styrene) (PaMS) and its hexamer is investigated using differential scanning calorimetry (DSC). The results, along with previous data on similar blends of PaMS/pentamer, are analyzed in the context of the Lodge–McLeish self‐concentration model. A methodology is described to partition the calorimetric transition to obtain effective Tgs for each component of the blend. The dependences of these effective Tgs on overall blend composition are described by the Lodge–McLeish model, although the self‐concentration effect is less than expected based on the Kuhn length. The length scales of the cooperatively rearranging regions for the two components in the blends are also calculated adapting Donth's fluctuation model to the partitioned DSC transitions and are found to be similar for the two components and show a slight decrease at intermediate concentrations. The kinetics associated with the glass temperature, Tg, is examined by studying the cooling rate dependence of Tg for the pure components and the blends, as well as by examining the enthalpy overshoots in the heating DSC scans. It is observed that the cooling rate dependence of Tg in PaMS/hexamer blends at intermediate concentrations is similar to that of the hexamer, indicating that the kinetics of the glass transition for blends is dominated by the high mobility oligomeric component. Moreover, compared to the pure materials, the PaMS/hexamer blends exhibit a considerably depressed enthalpy overshoot, presumably resulting from their broader relaxation time distribution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 418–430, 2008  相似文献   

10.
We characterized the glass transition temperature Tg of thin polyimide films by temperature-dependent spectroscopic ellipsometry and compared the results to DSC measurements of the bulk polymer. The effect of the curing temperature on Tg and the thermal expansion α(T) was analyzed. An improved ellipsometric data evaluation was used to get most precise and reliable Tg data. Tg increased with increasing curing temperature, while the bulk Tg was considerably lower than the thin film Tg. Both observations are attributed to the temperature sensitive release of the imidization by-product 2-hydroxyethyl methacrylate (HEMA) and crosslinker components as well as decomposition products from the material. Variation in the curing temperatures of 230–380 °C led to an increase in the Tg of 34 °C.  相似文献   

11.
Crystalline thermosetting blends composed of 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP)‐cured epoxy resin (ER) and poly(?‐caprolactone) (PCL) were prepared via the in situ curing reaction of epoxy monomers in the presence of PCL, which started from initially homogeneous mixtures of diglycidyl ether of bisphenol A (DGEBA), BAPP, and PCL. The miscibility of the blends after and before the curing reaction was established with differential scanning calorimetry and dynamic mechanical analysis. Single and composition‐dependent glass‐transition temperatures (Tg's) were observed in the entire blend composition after and before the crosslinking reaction. The experimental Tg's were in good agreement with the prediction by the Fox and Gordon–Taylor equations. The curing reaction caused a considerable increase in the overall crystallization rate and dramatically influenced the mechanism of nucleation and the growth of the PCL crystals. The equilibrium melting point depression was observed for the blends. An analysis of the kinetic data according to the Hoffman–Lauritzen crystallization kinetic theory showed that with an increasing amorphous content, the surface energy of the extremity surfaces increased dramatically for DGEBA/PCL blends but decreased for ER/PCL blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1085–1098, 2003  相似文献   

12.
The blends of poly(N-methyldodecano-12-lactam) (MPA) with poly(styrene-co-acrylic acid) (PSAA) prepared from dioxane solutions were studied by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The experimental DSC data of glass transition temperature Tg as a function of composition of amorphous phase were fitted for the as-prepared and re-scanned samples using theoretical approaches. The as-prepared blends show monotonic single-Tg dependence. The values of the Gordon-Taylor coefficient not far from unity suggest miscibility of the blend system in amorphous phase in the whole concentration range. As documented by FTIR, this miscibility is associated with hydrogen bonds between COOH groups of the acrylic acid units in PSAA molecules acting as the H-bond donor and CO groups of MPA acting as the H-bond acceptor. The Tg-dependencies obtained form the second runs have a profound sigmoid character. The Schneider treatment induced an idea of partial limited miscibility in the MPA/PSAA blends caused by prevalence of homogeneous contacts. The difference in Tg between the first and second run can partly be attributed to higher crystallinities in the former.  相似文献   

13.
Novel conjugated polymers with bisindolymaleimide were synthesized via simple metal-free condensation polymerization. The polymers exhibited high glass transition temperatures and decomposition temperatures with considerable luminescent properties.  相似文献   

14.
In this study, a series of binary mixtures of N-butyl stearate (nBS) and methyl palmitate (MP) were used to produce a novel composite phase change material (CPCM) for potential application in the eastern China, and their thermal properties were investigated by differential scanning calorimetry (DSC). The results of DSC indicated that the mixture consisting of 10 mass% nBS and 90 mass% MP is optimum as the CPCM in terms of the phase change temperature ranges (T f = 19.74–5.59 °C; T m = 18.34–33.80 °C) and latent heats (ΔH f = 176.8 J g?1; ΔH m = 189.3 J g?1). On the other hand, the thermal reliability and chemical stability of the CPCM after 120, 180, 240, 300, 360 and 500 accelerated thermal cycling tests were studied by DSC and fourier transform infrared (FTIR) analysis. The results demonstrated that the CPCM had good thermal reliability and chemical stability.  相似文献   

15.
We have investigated the thermal and structural properties of different commercial dental resins: FiltekTM Z-350, Grandio®, Tetric Ceram®, and TPH Spectrum®. The purpose of the present study was to evaluate quantitatively the photo-polymerization behavior and the effect of filler contents on the kinetic cures of the dental resins by using Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. We have successfully obtained the low and high glass transition T g values of the dental composite resins from DSC curves. It was also observed a good agreement between the both T g values, activation energies from thermal degradation, and the degree of conversion obtained for all samples. The results have shown that Tetric Ceram® dental resin presented the higher T g values, activation energy of 215 ± 6 KJ mol?1, and the higher degree of conversion (63%) when compared to the other resins studied herein.  相似文献   

16.
Keloid and hypertrophic scarring is a dermal fibroproliferative disorder characterized by increased fibroblast proliferation and excessive production of collagen. Excess scar formation occurs after dermal injury as a result of abnormal wound healing. Keloid formation has been ascribed to altered growth factor regulation, aberrant collagen turnover, genetics, immune dysfunction, sebum reaction, and altered mechanics. No single hypothesis adequately explains keloid formation. The thermal denaturations of pathologic human skin scar tissues were monitored by a SETARAM Micro DSC-II calorimeter. All the experiments were performed between 0 and 100 °C. The heating rate was 0.3 K min?1. DSC scans clearly demonstrated significant differences between the different types and conditions of samples (intact skin: T m = 54.8 °C and ΔH cal = 4.5 J g?1; normal scar: T m = 53.8 °C and ΔH cal = 4.2 J g?1; hypertrophic scar: T m = 54.2 °C and ΔH cal = 2.4 J g?1; keloid: T m = 52.9 °C and ΔH cal = 8.3 J g?1). The heat capacity change between native and denatured states of samples increased with the degree of structural alterations indicating significant water loosing. These observations could be explained with the structural alterations caused by the biochemical processes. With our investigations, we could demonstrate that DSC is a useful and well-applicable method for the investigation of collagen tissue of the human keloid and hypertrophic scar tissues. Our results may be of clinical relevance in the future, i.e., in the diagnosis of the two different pathologic scar formations, or in the choice of the optimal therapy of the disease.  相似文献   

17.
Diglycidyl ether of bisfenol-A (DGEBA)/poly(vinyl acetate) (PVAc)/poly(4-vinyl phenol) brominated (PVPhBr) ternary blends cured with 4,4’-diaminodiphenylmethane (DDM) were investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). Homogeneous (DGEBA+DDM)/PVPhBr networks with a unique T g are generated. Ternary blends (DGEBA+DDM)/PVAc/PVPhBr are initially miscible and phase separate upon curing arising two T gs that correspond to a PVAc-rich phase and to epoxy network phase. Increasing the PVPhBr content the T gof the PVAc phase move to higher temperatures as a consequence of the PVAc-PVPhBr interactions. Different morphologies are generated as a function of the blend composition.  相似文献   

18.
The non-isothermal crystallisation kinetics of Se90?xIn10Sbx (x = 0, 1, 2, 4, 5) chalcogenide glasses prepared by a conventional melt quenching technique was studied using the differential scanning calorimetry (DSC) measurement at different heating rates 5, 7, 10 and 12 °C min?1. The values of the glass transition temperature T g and the crystallisation temperature T c are found to be composition and heating rate dependent. The activation energy of glass transition E g, Avrami index n, dimensionality of growth m and activation energy of crystallisation E c have been determined from different models.  相似文献   

19.
UV-crosslinkable polyacrylates were synthesized for use as pressure sensitive adhesives (PSAs). These polyacrylates acted as polymeric photoinitiators due to the benzophenone incorporated into their backbones. Hydrogenated rosin epoxy methacrylate (HREM; based on hydrogenated rosin and glycidyl methacrylate) was also synthesized as a tackifier, and blended at different levels with the synthesized, UV-crosslinkable polyacrylates for use as PSAs. The effect of the new tackifier, HREM, on the properties of the UV-crosslinkable PSAs was examined in comparison with the properties exhibited by PSA/hydrogenated rosin blends. The characteristics of these PSA/tackifier blends were examined by Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and an advanced rheometric expansion system (ARES). In addition, the adhesion performance of the PSA blends was investigated using probe tack tests. DSC and ARES revealed all the PSA blends with HREM or hydrogenated rosin to be miscible at the molecular level. The glass transition temperature (Tg) of HREM was −25.6 °C, which is lower than that of other commercially available rosin tackifiers. FTIR revealed changes in the relative concentration of benzophenone groups in the PSAs at 1580 cm−1, which demonstrated that the crosslinking efficiency is proportional to the benzophenone content and UV dose, but decreases with increasing hydrogenated rosin content. However, the reduced crosslinking reaction efficiency was improved in the PSA/HREM blends due to the low Tg of HREM which only slightly increased the Tg of the PSA blends. Moreover, the relative initial decrease in the probe tack of the PSA/HREM blends was lower than that of the PSA/hydrogenated rosin blends after UV irradiation.  相似文献   

20.
The acetyl esterified calixarene (CA) derivatives were prepared from calix[4]resorcinarene (CRA), and ptert‐butylcalixarene (BCA[n], n = 4, 6, 8), respectively. Using these CA derivatives as curing agents, the thermal curing reactions of two multifunctional epoxy resins (jER 828, 186 g/equiv., and ESCN, 193.7 g/equiv.) were investigated. The temperatures of glass transition (Tg) and decomposition (T) were measured by DSC and TGA, respectively. Based on the yields, Tgs, and Tds of the thermal cured jER 828 epoxy resin with CRA‐E100, the curing conditions were optimized to be tetrabutylphosphonium bromide (TBPB) as catalyst in NMP at 160 °C for 15 h. Under this curing condition, the cured materials of jER 828 or ESCN using various CA derivatives as curing agents were prepared. Except for BCA4 derivatives, the yields of thermal curing reaction were higher than 90%. Tgs and Ts of the resultant cured materials were in the range of 113–248 °C and 363–404 °C, respectively. These results mean that the cured epoxy resins with excellent Tgs were successfully formed by using CA derivatives as curing agents. It was also found that the Tgs of cured epoxy resins were strongly affected by the degree of esterification of CA derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1931–1942, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号