首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid hot water (LHW) pretreatment is an efficient chemical-free strategy for enhancing enzymatic digestibility of lignocellulosic biomass for conversion to fuels and chemicals in biorefinery. In this study, effects of LHW on removals of hemicelluloses and lignin from corncobs were studied under varying reaction conditions. LHW pretreatment at 160 °C for 10 min promoted the highest levels of hemicellulose solubilization into the liquid phase, resulting into the maximized pentose yield of 58.8% in the liquid and more than 60% removal of lignin from the solid, with 73.1% glucose recovery from enzymatic hydrolysis of the pretreated biomass using 10 FPU/g Celluclast?. This led to the maximal glucose and pentose recoveries of 81.9 and 71.2%, respectively, when combining sugars from the liquid phase from LHW and hydrolysis of the solid. Scanning electron microscopy revealed disruption of the intact biomass structure allowing increasing enzyme’s accessibility to the cellulose microfibers which showed higher crystallinity index compared to the native biomass as shown by x-ray diffraction with a marked increase in surface area as revealed by BET measurement. The work provides an insight into effects of LHW on modification of physicochemical properties of corncobs and an efficient approach for its processing in biorefinery industry.  相似文献   

2.
In recent years, growing attention has been focused on the use of lignocellulosic biomass as a feedstock for the production of ethanol, a possible renewable alternative to fossil fuels. Several pretreatment processes have been developed for decreasing the biomass recalcitrance, but only a few of them seem to be promising. In this study, effect of various organic solvents and organic acids on the pretreatment of sugarcane bagasse was studied. Among the different organic acids and organic solvents tested, formic acid was found to be effective. Optimization of process parameters for formic acid pretreatment was carried out. The structural changes before and after pretreatment was investigated by scanning electron microscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The X-ray diffraction profile showed that the degree of crystallinity was more for pretreated biomass than that of untreated. The FTIR spectra shown at the stretching of hydrogen bonds of pretreated sugarcane bagasse arose at higher number. It also revealed that the cellulose content in the solid residue increased because the hemicelluloses fraction in raw materials was released by acid hydrolytic reaction.  相似文献   

3.
《印度化学会志》2021,98(10):100147
Lignocellulosic biomass can play a pivotal role in achieving the goal of sustainable development of a predominantly agrarian country like India. The abundant availability of lignocellulosic materials makes it more suitable to go for the energization of this waste material. Lignocellulosic agriculture waste is essentially renewable and carbon-neutral source of energy. It has the potential to minimize greenhouse gas emissions by adopting proper biomass to energy conversion routes like biochemical conversion to mitigate climate change. Pretreatment of lignocellulosic biomass is a compulsory step for delignification before hydrolysis and subsequent AD or fermentation process to facilitate enhanced biofuel (biogas/bioethanol) generation. The most studied pretreatment methods of lignocellulosic agricultural biomass in the past 10 years including acid, alkali, ionic liquid, microwave, ultrasonication, steam explosion, liquid hot water, ammonia-based, biological, and electrohydrolysis pretreatments methods are discussed in this review paper. The criteria to measure pretreatment efficiency, different pretreatment processes parameters, and their pros and cons are also discussed. The alkaline pretreatment method is most promising in the delignification of lignocellulosic agricultural biomass residues like rice straw. This review may impart help to the prospective researchers in understanding rubrics of different pretreatment processes for further research work in the area of pretreatment.  相似文献   

4.
Chemical pretreatment of lignocellulosic biomass has been extensively investigated for sugar generation and subsequent fuel production. Alkaline pretreatment has emerged as one of the popular chemical pretreatment methods, but most attempts thus far have utilized NaOH for the pretreatment process. This study aimed at investigating the potential of potassium hydroxide (KOH) as a viable alternative alkaline reagent for lignocellulosic pretreatment based on its different reactivity patterns compared to NaOH. Performer switchgrass was pretreated at KOH concentrations of 0.5–2 % for varying treatment times of 6–48 h, 6–24 h, and 0.25–1 h at 21, 50, and 121 °C, respectively. The pretreatments resulted in the highest percent sugar retention of 99.26 % at 0.5 %, 21 °C, 12 h while delignification up to 55.4 % was observed with 2 % KOH, 121 °C, 1 h. Six pretreatment conditions were selected for subsequent enzymatic hydrolysis with Cellic CTec2® for sugar generation. The pretreatment condition of 0.5 % KOH, 24 h, 21 °C was determined to be the most effective as it utilized the least amount of KOH while generating 582.4 mg sugar/g raw biomass for a corresponding percent carbohydrate conversion of 91.8 %.  相似文献   

5.
The digestibility of lignocellulosic biomass is limited by its high content of refractory components. The objective of this study is to investigate hydrothermal pretreatment and its effects on anaerobic digestion of sorted organic waste with submerged fermentation. Hydrothermal pretreatment (HT) was performed prior to anaerobic digestion, and three agents were examined for the HT: hot compressed water, alkaline solution, and acidic solution. The concentrations of glucose and xylose were the highest in the sample pretreated in acidic solution. Compared with that of the untreated sample, the biogas yields from digesting the samples pretreated in alkaline solution, acidic solution, and hot water increased by 364, 107, and 79 %, respectively. The decrease of chemical oxygen demand (COD) in liquid phase followed the same order as for the biogas yield. The initial ammonia content of the treated samples followed the order sample treated in acidic solution > sample treated in alkaline solution > sample treated in hot water. The concentrations of volatile fatty acids (VFAs) were low, indicating that the anaerobic digestion process was running at continuously stable conditions.  相似文献   

6.
Varying ionic liquid, 1-ethyl 3-methyl imidazolium acetate, pretreatment incubation temperature on lignocellulosic biomass substrates, corn stover, switchgrass and poplar, can have dramatic effects on the enzymatic digestibility of the resultant regenerated biomass. In order to delineate the chemical and physical changes resulting from the pretreatment process and correlate changes with enzymatic digestibility, X-ray powder and fiber diffraction, 13C cross polarization/magic angle spinning nuclear magnetic resonance spectroscopy, and compositional analysis was completed on poplar, corn stover and switchgrass samples. Optimal pretreatment incubation temperatures were most closely associated with the retention of amorphous substrates upon drying of regenerated biomass. Maximal glucan to glucose conversion for 24 h enzyme hydrolysis was observed for corn stover, switchgrass and poplar at ionic liquid incubation temperatures of 100, 110 and 120 °C, respectively. We hypothesize that effective pretreatment temperatures must attain lignin redistribution and retention of xylan for optimal enzyme digestibility.  相似文献   

7.
Photocatalyst-assisted ammonia pretreatment was explored to improve lignin removal of the lignocellulosic biomass for effective sugar conversion. Corn stover was treated with 5.0–12.5 wt.% ammonium hydroxide, two different photocatalysts (TiO2 and ZnO) in the presence of molecular oxygen in a batch reactor at 60 °C. Various solid-to-liquid ratios (1:20–1:50) were also tested. Ammonia pretreatment assisted by TiO2-catalyzed photo-degradation removed 70 % of Klason lignin under the optimum condition (12.5 % ammonium hydroxide, 60 °C, 24 h, solid/liquid?=?1:20, photocatalyst/biomass?=?1:10 with oxygen atmosphere). The enzymatic digestibilities of pretreated corn stover were 85 % for glucan and 75 % for xylan with NH3-TiO2-treated solid and 82 % for glucan and 77 % for xylan with NH3-ZnO-treated solid with 15 filter paper units/g-glucan of cellulase and 30 cellobiase units/g-glucan of β-glucosidase, a 2–13 % improvement over ammonia pretreatment alone.  相似文献   

8.
Pretreatment has been regarded as the most efficient strategy for conversion of lignocellulosic biomass to fermentable sugars. In this work, sulfolane pretreatment was performed to break the intricate structure of shrub willow for inhabitation of the enzymatic accessibility to holocellulose. The effects of varying pretreatment parameters on enzymatic hydrolysis of shrub willow were investigated. It was found that sulfolane was more compatible with lignin instead of carbohydrate, and the loss of carbohydrate could be attributed to water and acid generated from sulfolane. The optimum conditions leading to maximal sugar recovery from enzymatic saccharification were confirmed. After pretreatment of shrub willow powder in sulfolane at 170 °C for 1.5 h with mass ratio of sulfolane to substrate of 5, the sugar release could reach 555 mg/g raw materials (352 mg glucose, 203 mg xylose) when combining 20 FPU cellulase, 20 CBU β-glucosidase, and 1.5 FXU xylanase, representing 78.2 % of glucose and 56.6 % of xylose in shrub willow. This enhanced enzymatic saccharification was due to delignification and removal of a proportion of hemicelluloses, as confirmed by X-ray diffraction analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, gas chromatography, and ionic chromatography. Thus, these studies prove sulfolane pretreatment to be an effective and promising approach for biomass to biofuel processing.  相似文献   

9.
The enzymatic cocktail of cellulases is one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels and other chemicals. Here, the influence of liquid hot water, dilute acid, alkali, and combined acid/alkali pretreatments on sugarcane bagasse (SCB) used for cellulase production was investigated by means of spectroscopic and imaging techniques. Chemical composition and structural characteristics, such as crystallinity (determined by X-ray diffraction), functional groups (Fourier transform infrared spectroscopy), and microstructure (scanning electron microscopy), were used to correlate SCB pretreatments with enzymatic biosynthesis by a strain of the filamentous fungus Aspergillus niger under solid-state fermentation. The combined acid/alkali pretreatment resulted in a SCB with higher cellulose content (86.7 %). However, the high crystallinity (74 %) of the resulting biomass was detrimental to microbial uptake and enzyme production. SCB pretreated with liquid hot water yielded the highest filter paper cellulase (FPase), carboxymethyl cellulase (CMCase), and xylanase activities (0.4, 14.9, and 26.1 U g?1, respectively). The results showed that a suitable pretreatment for SCB to be used as a substrate for cellulase production should avoid severe conditions in order to preserve amorphous cellulose and to enhance the physical properties that assist microbial access.  相似文献   

10.
Pretreatment is the crucial step to disrupt the recalcitrant structure of lignocellulosic biomass for improving the enzymatic hydrolysis efficiency. Typically, hydrothermal, organosolv and hydrotropic pretreatments are environmentally benign and effective methods. In this work, effects of hydrothermal, organosolv and hydrotropic pretreatments on improving enzymatic hydrolysis of bamboo were comprehensively compared. Hydrotropic pretreatment was more effective in removal lignin and xylose from bamboo fiber cell wall. However, the surface coverage by lignin and extractives were dramatically displaced during organosolv pretreatment as investigation by X-ray photoelectron spectroscopy. After pretreatments, the crystallinity of cellulose in pretreated substrates has a significant reduction, and pores were exposed on fiber surface. The residual content of acetyl and phenolic groups in hydrotropic pretreated substrates is lower than organosolv pretreated substrates. In order to deeply assess the delignification of pretreatments, the isolated lignins obtaining from pretreatments process were characterized by Fourier transform infrared spectroscopy also. It was revealed that hydrotropic lignin contained more phenolic hydroxyl group and syringyl units than organosolv lignin. Compared to hydrothermal and organosolv pretreatment, cellulase adsorption capacity of pretreated substrates was notably improved by hydrotropic pretreatment, which indicating the better enzyme accessibility of cellulose. Eventually, the maximum glucose yield was obtained from hydrotropic pretreated substrates.  相似文献   

11.
Levulinic acid production, directly from lignocellulosic biomass, resulted in low yields due to the poor substrate accessibility and occurrence of side reactions. The effects of reaction conditions, enzymatic pretreatment, and inhibitor addition on the conversion of steam-exploded rice straw (SERS) short fiber to levulinic acid catalyzed by solid superacid were investigated systematically. The results indicated that the optimal reaction conditions were temperature, time, and solid superacid concentration combinations of 200 °C, 15 min, and 7.5 %. Enzymatic pretreatment improved the substrate accessibility to solid superacid catalyst, and p-hydroxyanisole inhibitor reduced the side reactions during reaction processes, which helped to increase levulinic acid yield. The levulinic acid yield reached 25.2 % under the optimal conditions, which was 61.5 % higher than that without enzymatic pretreatment and inhibitor addition. Therefore, enzymatic pretreatment coupled with the addition of p-hydroxyanisole increased levulinic acid production effectively, which contributed to the value-added utilization of lignocellulosic biomass.  相似文献   

12.
Microbial Lipid Production from Corn Stover via Mortierella isabellina   总被引:1,自引:0,他引:1  
Microbial lipid is a promising source of oil to produce biofuel if it can be generated from lignocellulosic materials. Mortierella isabellina is a filamentous fungal species featuring high content of oil in its cell biomass. In this work, M. isabellina was studied for lipid production from corn stover. The experimental results showed that M. isabellina could grow on different kinds of carbon sources including xylose and acetate, and the lipid content reached to 35 % at C/N ratio of 20. With dilution, M. isabellina could endure inhibition effects by dilute acid pretreatment of corn stover (0.3 g/L furfural, 1.2 g/L HMF, and 1 g/L 4-hydroxybenozic acid) and the strain formed pellets in the cell cultivations. An integrated process was developed combining the dilute acid pretreatment, cellulase hydrolysis, and cell cultivation for M. isabellina to convert corn stover to oil containing fungal biomass. With 7.5 % pretreated biomass solid loading ratio, the final lipid yield from sugar in pretreated biomass was 40 % and the final lipid concentration of the culture reached to 6.46 g/L.  相似文献   

13.
Among the many types of lignocellulosic biomass pretreatment methods, the use of ionic liquids (ILs) is regarded as one of the most promising strategies. In this study, the effects of four kinds of ILs for pretreatment of lignocellulosic biomass such as bagasse, eucalyptus, and cedar were evaluated. In direct ethanol fermentation from biomass incorporated with ILs by cellulase-displaying yeast, 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) was the most effective IL. The ethanol production and yield from [Bmim][OAc]-pretreated bagasse reached 0.81 g/L and 73.4% of the theoretical yield after fermentation for 96 h. The results prove the initial concept, in which the direct fermentation from lignocellulosic biomass effectively promoted by the pretreatment with IL.  相似文献   

14.
Biological pretreatment of lignocellulosic biomass by fungi can represent a low-cost and eco-friendly alternative to physicochemical methods to facilitate enzymatic hydrolysis. However, fungal metabolism can cause cellulose loss and it is therefore necessary to use the appropriate fungal strain-biomass type combination. In this work, the effects of biological pretreatments carried out by five different fungi on enzymatic hydrolysis of wheat straw were investigated. The best results were obtained with a Ceriporiopsis subvermispora strain, which minimized weight and cellulose losses and gave the highest net sugar yield (calculated with respect to the holocellulose content of the untreated straw), up to 44 % after a 10-week pretreatment, more than doubling the yields obtained with the other isolates. Moreover, prolonging the pretreatment from 4 up to 10 weeks produced a 2-fold increase, up to 60 %, in digestibility (sugar yield, calculated considering the holocellulose content of the pretreated material). The hemicellulose content of the pretreated material resulted inversely correlated with digestibility, and it could thus be utilized as an index of the pretreatment efficacy. Finally, a correlation was also found between digestibility and the difference between the absorbance values at 290 and 320 nm of pretreated wheat straw extracts.  相似文献   

15.
The thermal degradation behavior of six different vegetal fibers was studied using thermogravimetry under nitrogen atmosphere at four different heating rates (5, 10, 20 and 40 °C min?1). The degradation models Kissinger, Friedman and Flynn–Wall–Ozawa methods were used to determine the apparent activation energy and the frequency factor of these fibers. Furthermore, the solid state degradation mechanisms were determined using Criado’s method. Additionally, X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy were analyzed to corroborate the obtained results. The results indicated that the apparent calculated activation energies can be more closely related to the exponential dependence of the rate of heterogeneous reactions than to the, necessary “energy”, which is commonly used. The Criado’s master curves indicated two different degradation mechanisms for the fibers: diffusion followed by random nucleation. The results also indicated that the crystallinity index as calculated by X-ray diffraction and determinated by FTIR does not necessarily represent higher thermal stability as noted by the thermogravimetric analysis curves. The thermal behavior and the degradation mechanism did not show to be influenced by the lignocellulosic components of the fibers, exception for buriti and sisal. This behavior was attributed to higher extractive content.  相似文献   

16.
Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4 %, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3 %, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose.  相似文献   

17.

Applying material balance calculations to the evaluation and optimization of lignocellulosic biomass conversion processes is fundamentally important. The lack of a general framework for material balance calculations and inconsistent compositional analysis data have made it difficult to compare results from different research groups. Material balance templates have been developed to follow accurately the distribution of carbon in lignocellulosic substrates through the pretreatment and simultaneous saccharification and fermentation (SSF) processes, and provide information on overall carbon recovery, recovery of individual sugars, and solubilization of biomass components. Based on material balance considerations, we developed equations that allow us to compute overall ethanol yields for biochemical conversion of biomass correctly.

  相似文献   

18.
Liquid hot water pretreatment has been proposed as a possible means of improving rates of enzymatic hydrolysis of biomass while maintaining low levels of inhibitory compounds. Supplementation of liquid hot water pretreatment with dissolved carbon dioxide, yielding carbonic acid, has been shown to improve hydrolysis of some biomass substrates compared with the use of water alone. Previous studies on the application of carbonic acid to biomass pretreatment have noted a higher pH of hydrolyzates treated with carbonic acid as compared with the samples prepared with water alone. This study has applied recently developed analytical methods to quantify the concentration of organic acids in liquid hot water pretreated hydrolyzates, prepared with and without the addition of carbonic acid. It was observed that the addition of carbon dioxide to liquid hot water pretreatment significantly changed the accumulated concentrations of most measured compounds. However, the measured differences in product concentrations resulting from addition of carbonic acid did not account for the measured differences in hydrolyzate pH.  相似文献   

19.
The transformation of renewable biomass into valuable products as alternatives to fossil fuels is essential for sustainable energy in sustainable society. This work systematically investigates the pyrolysis of sorghum bagasse biomass into bio-char and bio-oil products and studies the effect of temperature (623–823 K) on the conversion of sorghum bagasse and products yields. The physicochemical properties of bio-char were thoroughly studied using powder X-ray diffraction, elemental analysis (CHNSO), scanning electronic microscope, calorific value (CV), and Fourier transform infrared (FTIR) spectroscopy techniques. Also, gas chromatography–mass spectrometry (GC–MS), CV, and FTIR were used to understand the properties of bio-oil. The results obtained indicate that an increase in the pyrolysis temperature from 623 to 823 K leads to a decrease in the bio-char yield from 42.55 to 30.38%. On the other hand, the maximum bio-oil yield of 15.94% was obtained at 723 K. The bio-char obtained at 673 and 773 K was found by FTIR analysis to be composed of a highly ordered aromatic carbon structure. The calorific value of bio-oil, which contains a greater amount of acidic compounds, was found to be 6740 kcal/kg. The GC–MS analyses revealed the presence of octadecenoic acid, p-cresol, 2,6-dimethoxy phenol, 4-ethyl 2-methoxy phenol, phenol, o-guaiacol, and octadecanoic acid in the bio-oil obtained from the pyrolysis of sorghum bagasse biomass. The present study provides useful information for understanding the quality of bio-oil and bio-char obtained from high biomass sorghum bagasse.  相似文献   

20.
Sugarcane tops is one of the largest biomass resources in India and in tropical countries such as Brazil in terms of surplus availability. Conversion of this feedstock to ethanol requires pretreatment to make it more accessible for the enzymes used in saccharification. Though several pretreatment regimens have been developed for addressing biomass recalcitrance, very few seem to be promising as an industrial process. A novel hybrid method involving use of mild acid and surfactant was developed which could effectively remove lignin and improve the sugar yield from sugar cane tops. Operational parameters that affect the pretreatment efficiency (measured as yield of sugars) were studied and optimized. Changes in structural properties of the biomass were studied in relation to the pretreatment process using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier Transform Infrared (FTIR) analysis, and the changes in chemical composition was also monitored. The biomass pretreated with the optimized novel method could yield 0.798?g of reducing sugars per gram of pretreated biomass upon enzymatic hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号