首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of titanium pyrophosphate is carried out, and the material is sintered at different temperatures between 370 and 970 °C. Yttrium is added during the synthesis to act as acceptor dopant, but it is mainly present in the material in secondary phases. The conductivity is studied systematically as a function of sintering temperature, pH2O, pO2, and temperature (100–400 °C). Loss of phosphorus upon sintering above 580–600 °C is confirmed by energy dispersive spectroscopy and combined thermogravimetry and mass spectrometry. The conductivity decreases with increasing sintering temperature and decreasing phosphorus content. The highest conductivity is 5.3?×?10?4 S cm?1 at 140 °C in wet air (pH2O?=?0.22 atm) after sintering at 370 °C. The conductivity is higher in wet atmospheres than in dry atmospheres. The proton conduction mechanism is discussed, and the conductivity is attributed to an amorphous secondary phase at the grain boundaries, associated with the presence of excess phosphorus in the samples. A contribution to the conductivity by point defects in the bulk may explain the conductivity trend in dry air and the difference in conductivity between oxidizing and reducing atmospheres at 300–390 °C. Slow loss of phosphorus by evaporation over time and changes in the distribution of the amorphous phase during testing are suggested as causes of conductivity degradation above 220 °C.  相似文献   

2.
Thermal decomposition of HAuCl4·3H2O and AgNO3, as precursors for Au and Ag nanoparticles, respectively, was monitored by coupled TG–DTA with TG/EGA–FTIR and EGA–MS techniques in a flowing 80 %Ar + 20 %O2 and Ar atmospheres in the temperature range of 30–600 °C. The intermediate and final products of thermal decomposition were analysed by ex situ XRD and FTIR techniques. The thermal degradation of HAuCl4·3H2O starts immediately after melting at 75 °C and takes place in three steps in the temperature range of 75–320 °C with total mass loss of 49.4 and 49.7 % in artificial air and Ar atmospheres, respectively. EGA by MS and FTIR revealed a simultaneous release of H2O and HCl in the temperature range of 75–235 °C. EGA by MS revealed a release of Cl2 at around 225 °C and in the interval of 250–320 °C. According to the XRD analysis, the main solid product in the end of the first decomposition step at 190 °C is AuCl3; in the end of the second decomposition step at 240 °C is AuCl and the final product at 320 °C is Au. The thermal decomposition of AgNO3 takes place in a single step in the temperature range of 360–515 °C with a total mass loss of 39.0 and 37.8 % in flowing artificial air and Ar atmospheres, respectively. According to EGA–MS and EGA–FTIR the main evolved gases are NO2, NO and O2. The final product of the thermal decomposition at 600 °C is Ag irrespective of the atmosphere.  相似文献   

3.
The samples from kaolin Sedlec were investigated by the help of DTA, TG, and temperature dependences of DC conductivity using Pt wire electrodes and linear heating up to 1,050 °C. After drying, the samples contained ~1.5 mass% of the physically bound water. DTA and TG reflected generally known facts about a release of the physically bound water, dehydroxylation, and metakaolinite → Si–Al spinel transformation. The results of electrical measurements showed the electric current passed over the maximum at 60 °C. The self-ionization of water results in the process H2O → H+ + OH? in the water layers on the crystal surfaces; consequently, OH? and H+ are the main charge carriers in the low-temperature region. The water molecules simultaneously evaporate from the sample which decreases the number of the charge carriers. When the physically bound water evaporates, the current is carried mostly by K+ and Na+ ions. During dehydroxylation, the hydroxyls OH? split into H+ and O2?. The ions H+ jump to the neighboring OH? groups creating the water molecules. The ions O2?remain bounded to the newly created metakaolinite lattice. Therefore, mobile protons contribute to the electric current. At the same time, this contribution gradually decreases because of the escape of H2O from the sample. The sharp current peak and DTA peak at 970 °C imply relatively fast metakaolinite → Si–Al spinel transformation. This DC current peak results from the shift of Al3+ and O2? ions into new positions.  相似文献   

4.
Barium cerate doped by trivalent rare earth metal ions is a potentially huge component of materials for electrochemical industry due to its high protonic conductivity. However, the poor chemical stability especially in the presence of CO2, SO2 or H2O, resulting in decreasing the mechanical durability of obtained materials, limits their possible applications. The new approach towards stable ceramic protonic conductors with high electrical conductivity is presented. Thermal stability of yttrium doped (10 mol%) of BaCeO3 was enhanced by forming the composite material BaCe0.9Y0.1O3–BaWO4 (10 mol% of BaWO4). The synthesis was performed by solid-state reaction method. The detailed study of thermal decomposition of starting powders mixture was performed using thermogravimetry and differential thermal analysis (TG/DTA) techniques combined with Evolved Gas Analysis (EGA—mass spectrometry). Structure, phase composition and microstructure together with thermal stability of sintered materials were determined. The exposition tests were performed to characterise the stability of composites in carbon dioxide and water vapour-rich atmospheres. The samples were exposed to atmosphere containing CO2/H2O (7 % of CO2 in air, 100 % RH) at temperature of 25 °C for 300 h. Thermal analysis supplied with mass spectrometry was applied to analyse the materials after the test. The results of this experiment showed better chemical resistance of composite material—BaCe0.9Y0.1O3 with 10 mol% of BaWO4 compared to single phase material.  相似文献   

5.
Nano-sized TiO2–60 wt% SrO composite powders were synthesized from titanium isopropoxide and Sr(OH)2·8H2O by use of a sol–gel method. Ag spot-coated TiO2–60 wt% SrO composite powders containing 3, 5, or 7 wt% Ag were synthesized by hydrothermal-assisted attachment, by use of Ag hydrosol in a high-pressure bomb at 250 °C and 450 psi. Nano-sized Ag particles approximately 5–25 nm in diameter adhered to the TiO2–60 wt% SrO2 composite powders. The photocatalytic activity of Ag spot-coated TiO2–SrO powders in the degradation of phenol showed that all were highly active when irradiated with UV light. TiO2–60 wt% SrO composite powder spot-coated with 5 wt% Ag was more photocatalytically active under visible light than TiO2–SrO composite powder.  相似文献   

6.
Five new dumbbell-shaped polyhedral oligomeric silsesquioxanes (POSSs), in which two identical silicon cages R7(SiO1.5)8 (with R = isobutyl), linked to various aromatic bridges (Ar, Ar–Ar, Ar–O–Ar, Ar–S–Ar and Ar–SO2–Ar, where Ar = p-C6H4) were prepared through a literature method opportunely modified by us to make easier preparation and increase yield, which was higher than 70 % in all cases. The obtained products were the expected ones, as supported by the results of elemental analysis and 1H NMR spectra. Their resistance to the thermal degradation in both flowing nitrogen and static air atmosphere was checked by degrading samples at 10 °C min?1 and determining temperatures at 5 % mass loss (T 5%) and residues at 700 °C. The T 5% values in air were lower than the corresponding ones in nitrogen, but the trend among the various POSSs investigated was the same in both used atmospheres, with the most high value for the compound having the Ar–O–Ar aromatic bridge. The residues at 700 °C in air of the compounds having not hetero-atoms (O or S) in the aromatic bridge were higher than those in nitrogen, whilst no substantial difference was observed for the other ones.  相似文献   

7.
The composite/nanocomposite powders of Mn0.5Ni0.5Fe2O4/Fe type were synthesized starting from nanocrystalline Mn0.5Ni0.5Fe2O4 (D = 7 nm) (obtained by ceramic method and mechanical milling) and commercial Fe powders. The composites, Mn0.5Ni0.5Fe2O4/Fe, were milled for up to 120 min and subjected to heat treatment at 600 °C and 800 °C for 2 h. The manganese-nickel ferrite/iron composite samples were subjected to differential scanning calorimetry (DSC) up to 900 °C for thermal stability investigations. The composite component phases evolution during mechanical milling and heat treatments were investigated by X-ray diffraction technique. The present phases in Mn0.5Ni0.5Fe2O4/Fe composite are stable up to 400–450 °C. In the temperature range of 450-600 °C, the interdiffusion phenomena occurs leading to the formation of Fe1?xMnxFe2O4/Ni–Fe composite type. The new formed ferrite of Fe1?xMnxFe2O4 type presents an increased lattice parameter as a result of the substitution of nickel cations into the spinel structure by iron ones. Further increases of the temperature lead to the ferrite phase partial reduction and the formation of wustite-FeO type phase. The spinel structure presents incipient recrystallization phenomena after both heat treatments (600 °C and 800 °C). The mean crystallites size of the ferrite after heat treatment at 800 °C is about 75 nm. After DSC treatment at 900 °C, the composite material consists in Fe1?xMnxFe2O4, Ni structure, FeO, and (NiO)0.25(MnO)0.75 phases.  相似文献   

8.
High-precision mercury (Hg) stable isotopic analysis requires relatively large amounts of Hg (>10 ng). Consequently, the extraction of Hg from natural samples with low Hg concentrations (<1–20 ng/g) by wet chemistry is challenging. Combustion–trapping techniques have been shown to be an appropriate alternative [1]. Here, we detail a modified off-line Hg pre-concentration protocol that is based on combustion and trapping. Hg in solid samples is thermally reduced and volatilized in a pure O2 stream using a temperature-programmed combustion furnace. A second furnace, kept at 1,000 °C, decomposes combustion products into H2O, CO2, SO2, etc. The O2 carrier gas, including combustion products and elemental Hg, is then purged into a 40 % (v/v) acid-trapping solution. The method was optimized by assessing the variations of Hg pre-concentration efficiency and Hg isotopic compositions as a function of acid ratio, gas flow rate, and temperature ramp rate for two certified reference materials of bituminous coals. Acid ratios of 2HNO3/1HCl (v/v), 25 mL/min O2 flow rate, and a dynamic temperature ramp rate (15 °C/min for 25–150 and 600–900 °C; 2.5 °C/min for 150–600 °C) were found to give optimal results. Hg step-release experiments indicated that significant Hg isotopic fractionation occurred during sample combustion. However, no systematic dependence of Hg isotopic compositions on Hg recovery (81–102 %) was observed. The tested 340 samples including coal, coal-associated rocks, fly ash, bottom ash, peat, and black shale sediments with Hg concentrations varying from <5 ng/g to 10 μg/g showed that most Hg recoveries were within the acceptable range of 80–120 %. This protocol has the advantages of a short sample processing time (~3.5 h) and limited transfer of residual sample matrix into the Hg trapping solution. This in turn limits matrix interferences on the Hg reduction efficiency of the cold vapor generator used for Hg isotopic analysis.  相似文献   

9.
The crystallization process of some glasses in the ternary Na2O–SiO2–PbO system with good chemical stability that can be used for waste inertization was studied using X-ray diffraction (XRD), infrared spectroscopy (FT-IR), differential thermal analysis (DTA) and scanning electron microscopy. The parent glasses were characterized by XRD and FT-IR, and their vitreous state was determined. DTA measurements evidenced glass transition (T g) and crystallization temperatures (T c). The thermal treatments were conducted at vitreous transition temperature (400 °C) and at highest effect of crystallization (650 °C). XRD evidenced the lead and sodium silicate crystalline phases in samples treated at 650 °C for 12 h. Micrometer crystallites dispersed in the glass matrices have affected the transparence of glasses and made them opaque after treatment at 650 °C. The influence of oxide quantities in compositions on the crystallization tendency was revealed. A PbO higher content than that of SiO2 as well as lower Na2O content decreased the tendency of crystallization.  相似文献   

10.
The phase transformation and crystalline growth of 4 mol% yttria partially stabilized zirconia (4Y-PSZ) precursor powders have been investigated using the coprecipitation route, using zirconium oxide chloride octahydrate (ZrOCl2·8H2O) and yttrium nitrate (Y(NO3)3·6H2O) as the initial materials. Differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED), and high resolution TEM (HRTEM) were utilized to characterize the behavior of phase transformation and crystalline growth of the 4Y-PSZ precursor powders after calcined. Tetragonal ZrO2 crystallization occurred at about 718.2 K. The activation energy of tetragonal ZrO2 crystallization was 227.0 ± 17.4 kJ/mol, obtained by a non-isothermal method. The growth morphology parameter (n) and growth mechanism index were close to 2.0, showing that tetragonal ZrO2 had a plate-like morphology. The crystalline size of tetragonal ZrO2 increased from 7.9 to 27.6 nm when the calcination temperature was increased from 973 to 1,273 K. The activation energies of tetragonal ZrO2 growth were 14.97 ± 0.33 and 84.46 ± 6.65 kJ/mol when precursor powders after calcined from 723–973 and 973–1,273 K, respectively.  相似文献   

11.
A novel erbium(III)-carboxylate polymeric complex [{Er(H2btec)2/4(btec)3/6(H2O)}·2H2O] n , simplified as ECPC, (H4btec=1,2,4,5-benzenetetracarboxylic acid) was synthesized under solvothermal conditions (H2O/acetic acid). ECPC obtained was characterized by differential thermal analysis/thermogravimetry (DTA/TG), single-crystal X-ray diffraction, elemental analysis and FT-IR analysis techniques. The result of single-crystal X-ray diffraction analysis shows that the ECPC crystallizes in monoclinic symmetry, and the space group P2(1)/n, a=10.6933(15) Å, b=7.1243(10) Å, c=17.092(2) Å, α=γ=90°, β=97.109(2)°, V=1292.1(3) Å3, Z=4, R 1=0.0286, wR 2=0.0686. ECPC demonstrates a 3-D supramolecular framework containing nine-coordinate erbium centers and channels. The uncoordinated water molecules occupy the channels in ECPC. The results of TG/DTA, IR and elemental analysis performed also give positive information of the proposed crystal structure.  相似文献   

12.
For the first time, solid solutions of LiMn2–X Mo X O4 nanoparticles were synthesized by combustion method at 700 °C in air. The synthesized LiMn2–X Mo X O4 (X?=?0.0–0.2) nanoparticles were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy (FT-IR), Field emission-scanning electron microscopy, and Particle size analysis. The unit-cell constant is increasing from 8.237 to 8.293 Å with the increase of Mo, the presence of Mo at X?≤?0.05 in LiMn2–X Mo X O4 nanoparticles retained the spinel structure (Fd-3m), whereas on increasing the Mo (X?≥?0.05 %), the ordering of Li+ ions in both octahedral and tetrahedral cationic position leads to the lowering of symmetry (P4132). On increasing the Mo content, prominent peak splitting and broadening are observed at 600–500 and 830 cm?1 for Li–Mn–O and Mo–O respectively in the FT-IR spectra. The TG/DTA spectrum reveals that the convenient formation of Li mangano-molybdate is at 700 °C. The voltammograms of all the samples show two redox peaks centered around 4 V except for the sample with higher Mo doping (X?=?0.2). The sample with X?=?0.03 shows higher redox peak current values. A marginal increase of 146 Ω R ct value was found for the LiMn1.97Mo0.03O4 nanomaterial after 10th cycle which is rather high for the rest of the materials. A discharge capacity retention of 88 % at 50th cycle is observed for X?=?0.03 sample, while the other samples exhibit drastically reduced capacity. The LiMn1.97Mo0.03O4 nanoparticle can able to deliver higher and constant discharge capacity, and it may be a good alternative for the existing cathode materials.  相似文献   

13.
Seven-coordinate Fe(III) complexes [Fe(dapsox)(H2O)2]+, where [dapsox = 2,6-diacetylpyridine-bis(semioxamazide)] is an equatorial pentadentate ligand with five donor atoms (2O and 3N), were studied with regard to their acid–base properties and complex formation equilibria. Stability constants of the complexes and the pK a values of the ligands were measured by potentiometric titration. The interaction of [Fe(dapsox)(H2O)2]+ with the DNA constituents, imidazole and methylamine·HCl were investigated at 25 °C and ionic strength 0.1 mol·dm?3 NaNO3. The hydrolysis constants of the [Fe(dapsox)(H2O)2]+ cation (pK a1 = 5.94 and pK a2 = 9.04), the induced ionization of the amide bond and the formation constants of the complexes formed in solution were calculated using the nonlinear least-squares program MINIQUAD-75. The stoichiometry and stability constants for the complexes formed are reported. The results show the formation of 1:1 and 1:2 complexes with DNA constituents supporting the hepta-coordination mode of Fe(III). The concentration distributions of the various complex species were evaluated as a function of pH. The thermodynamic parameters ΔH° and ΔS° calculated from the temperature dependence of the equilibrium constants were investigated for interaction of [Fe(dapsox)(H2O)2] with uridine.  相似文献   

14.
The statistical associating fluid theory equation of state (EoS) is employed in a time efficient way for the correlation and prediction of vapor–liquid equilibrium of the CO2 + H2O binary system for the temperature (10–100 °C) and pressure (1–600 bar) ranges suitable for simulation of CO2 geologic sequestration. The effective number of segments and energy parameter are correlated with the reduced temperature. Simple mixing rules are applied to obtain binary interaction parameters. Assigning a fixed H2O composition in the mixing rule makes the phase equilibrium calculations relatively fast compared to other EoS’s. The results obtained by the model used were found to be in satisfactory agreement with the literature data.  相似文献   

15.
Pure orthorhombic phase Bi2WO6 powders were synthesized by a microwave hydrothermal method in the absence of surfactants and templates, using Bi(NO3)3·5H2O and Na2WO4·2H2O as raw materials. Photocatalytic properties of the samples prepared at different reaction temperatures were also studied with Rhodamine B (RhB) solution as the target catabolite under visible light. The results indicate that flower-like Bi2WO6 powders can be obtained by controlling the microwave reaction temperatures in the absence of any additives. The growth of flower-like Bi2WO6 powders is a multistage layer assembly process, in which the flower-like Bi2WO6 self-assembling with the uniform size about 2 μm is synthesized at 180 °C. At the same time, the photocatalytic reaction rate constant (k) gets up to 0.04167/min and the degradation rate of RhB solution is more than 96 % after being irradiated under visible light for 70 min.  相似文献   

16.
The methods of X-ray diffraction analysis, thermogravimetric analysis, differential scanning calorimetry, and dilatometry are used to study special features of the structural-phase state of the 80 mass% ZrO2(Y)–20 mass% Al2O3 plasmochemical powders (PCPs) and their effects on the sintering of composite ceramics. It is revealed that the ZrO2(Y)–Al2O3 powder composite represents a mechanical mixture containing crystalline tetragonal zirconium dioxide and aluminum oxide nanoparticles, the latter found in an amorphous state and partially included into the ZrO2(Y) lattice, thus forming metastable solid solutions of variable composition. Heating of the composite powder within the temperature range 740–1,000 °C reveals an exothermal effect associated with decomposition of metastable states of aluminum oxide. This is accompanied by the formation of the corundum-phase nuclei having subcritical dimensions. They achieve the critical sizes at higher temperatures T > 1200 °C, when α-Al2O3 is finally crystallized. The shrinkage response of the powder compacts during non-isothermal sintering is measured in a sensitive dilatometer. It is shown that the shrinkage curve consists of several stages that closely correlate with the concurrent structural-phase transformation in the composite ZrO2(Y)–Al2O3 powder mixture. The decisive contribution into shrinkage during non-isothermal sintering of composite comes from the high-temperature stages with the maximum shrinkage rate at the temperatures 1,250 and 1,550 °C. It is found out that the regime of sintering the ultrafine PCPs (T = 1,600 °C, t = 1 h) allows producing composite ceramic materials with a porosity of Q ≈ (5–7) %, microhardness H v = 12.3 GPa, and crack resistance К 1c = (10–11) MPa m0.5.  相似文献   

17.
Synthesis of rutile pigments is based on solid state reaction and on Hedvall effect, i.e., phase transformation from anatase to rutile. Therefore, it is important to know the thermal behavior of these compounds (the temperature of this change). The goal was to prepare rutile pigments of type Ti1?3xCrxNb2xO2+x/2 by conventional solid state method from titanium dioxide TiO2 (AV-01, anatase), to determine an influence of composition (x = 0, 0.05, 0.10, 0.20, 0.30, 0.50) and calcination temperature (850; 900; 950; 1,000; 1,050; 1,100; 1,150 °C) on color properties of these compounds and to analyze other starting compounds of titanium (hydrated anatase paste TiO2·nH2O, titanyl sulfate dihydrate TiOSO4·2H2O (VKR 611), hydrated sodium titanium oxide paste Na2Ti4O9·nH2O) and their reaction mixtures for x = 0.05 by simultaneous TG–DTA analysis. According to the highest chroma C of color, the optimal conditions for synthesis of these pigments are concentration x = 0.05 and calcination temperature 1,050 °C and higher. It was observed that initial temperature 760–830 °C is needful for a formation of rutile structure. This temperature is the lowest for hydrated Na2Ti4O9 paste (760 °C) and similar for other starting compounds of titanium.  相似文献   

18.
CuCr2O4 spinel powders were synthesized starting from different chromium sources, namely (i) chromium oxide (α-Cr2O3) and (ii) ammonium dichromate ((NH4)2Cr2O7). The copper source was a Cu(II) carboxylate-type complex. The Cu(II) carboxylate complex was obtained by the redox reaction between Cu(NO3)2·3H2O and 1,3-propanediol (1,3PG) at 130 °C. In the first case (i), we have started from a mixture of α-Cr2O3, Cu(NO3)2·3H2O and 1,3PG that upon heating formed the copper malonate complex, which decomposed around 220 °C forming an oxide mixture (CuO + α-Cr2O3). In the second case (ii), (NH4)2Cr2O7, Cu(NO3)2·3H2O and 1,3PG were homogenously mixed. Heating this mixture at 130 °C resulted, in situ, in the Cu(II) complex. On controlled temperature increase, the violent decomposition of (NH4)2Cr2O7 took place at 180 °C along with the decomposition of the Cu(II) complex, leading to an amorphous oxide mixture of Cr2O3+x and CuO. By annealing the samples in the temperature range 400–1000 °C, the spinel phase (CuCr2O4) was obtained in both cases: (i) at 800 °C and (ii) at 600 °C as a result of the interactions between the precursors used, when the oxide system was amorphous and highly reactive. The presence of CuCr2O4 was highlighted by XRD and FTIR analyses.  相似文献   

19.
In this paper, we report the synthesis of the La–Mo–O tartrate gel precursors with the initial composition for La2Mo3O12 ceramic prepared from different starting materials by an aqueous sol–gel synthesis route using tartaric acid as a complexing agent. Moreover, the La–Mo–O carbonate–tartrate and nitrate–tartrate gel precursors doped with x % of Eu2O3 (x = 0.5, 1.0, 2.0, 4.0, and 8.0) by aqueous sol–gel synthesis method were also prepared. The thermal decomposition of both the La–Mo–O carbonate–tartrate and nitrate–tartrate gels, which is the critical stage of this preparation technique, is investigated in detail. X-ray diffraction, scanning electron microscopy, and ultraviolet–visible spectroscopy were used for the determination of crystal structure, surface morphology, and optical properties of the La–Mo–O:xEu2O3 samples annealed at 400, 500, 600, 700, 800, 900, and 1,000 °C temperatures, respectively. The obtained results show that the thermal decomposition of the La–Mo–O tartrate gel precursors has occurred in a separate manner. The differences that came up during the thermal treatment of La–Mo–O tartrate gels have related only with the initial composition that determined the different crystallization ways of final compounds. Besides, the dopant concentration mainly influences the size of obtained particles and agglomeration of synthesized final materials. The initial composition of the La–Mo–O gel precursors has significant influence on the formation of final crystal phases at relatively lower temperatures than was expected according to the TG–DTA measurements. Finally, the optical properties of La–Mo–O tartrate gel precursors annealed at 500 °C depend on the nature of the initial compounds, which were used during the aqueous sol–gel process.  相似文献   

20.
Birnessite type layered MnO6 oxides with increased crystallinity were synthesized from six carbohydrates and three dihydric phenols viz., dextrose, starch, fructose, galactose, maltose, lactose, catechol, resorcinol, quinol and KMnO4 through the formation of a sol–gel. All of the MnO6 oxides were characterized by powder XRD. The strong signal at 2θ ~ 12° corresponding to 7.4 Å refers to the Mn–Mn distance between the adjacent layers. The interlayer volume is dispersed with K+ ions and H2O molecules. The presence of interlayer K+ ions is indicated by a signal at 25°, corresponding to a distance of 3.5 Å. IR spectra of the oxides show signature bands at ca. 500 cm?1 due to the stretching modes occurring for MnO6 entity. A broad band observed at ca. 3300 cm?1 is due to interlayer water molecules. Thermal analysis indicated three stage decomposition with the formation of MnO2 at ca. 600 °C through the intermediate formation of Mn(OH) n . The MnO6 exhibited a remarkable CO2 scrubbing ability, which has also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号