首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultrathin film of oligoimide has been fabricated on amine-modified substrates of silicon and quartz through alternate layer-by-layer (LBL) assembly of pyromellitic dianhydride (PMDA) and diaminodiphenyl ether (DDE), with interlayer links established by covalent bonds. The assembly was formed in supercritical carbon dioxide (SCCO2) and in solution (dimethyl acetamide, DMAc), and the imidization reaction was performed by thermal and chemical methods, in benzene and in the supercritical medium. X-ray photoelectron and UV-visible absorption spectroscopies, atomic force microscopy (AFM), and ellipsometry were employed to study the interfacial chemistry, growth, morphology, and thickness of the assembled film. XPS analysis confirmed the sequential deposition of PMDA and DDE through formation of amic acids. At each deposition step, surface functionalities for the assembly of the next layer were generated. The interfacial chemical reaction was almost complete in the SCF (supercritical fluid) medium, as compared to the conversions observed in conventional assembly. Both the PMDA and DDE molecules were assembled in an organized manner, resulting in uniform surface morphology. Uniform film growth was revealed from the increase of UV absorption intensity and film thickness. The overall growth and quality of the films in SCF medium were greater than that for films formed in DMAc. The results of this novel study show that an environmentally friendly solvent can be used to obtain mechanically robust and thermally stable ultrathin films with little loss of material during the imidization step. In contrast to conventional deposition of the molecular layers that utilizes liquid solvents, use of SCCO(2) avoids solvent effects and posttreatment for solvent removal, while ensuring facile transport during contact.  相似文献   

2.
The tribological properties of ultrathin films containing nanoparticles encapsulated in immobilized dendrimers are investigated. The films were formed by covalent molecular assembly in supercritical carbon dioxide, and the Au nanoparticles were formed in aqueous solution. End-capping of the terminal amine groups of the dendrimer by fluorinated species resulted in a reduction in the size of the nanoparticles formed. The resulting film structure displayed a lower coefficient of friction when the nanoparticles were formed after fluorination. The observed improvement in the tribological properties is attributed to the reduction in agglomeration of the nanoparticles due to the presence of the fluorine moieties.  相似文献   

3.
The crystalline structures of “microlayer” and “nanolayer” polyethylene have been examined in coextruded films comprised of alternating layers of high-density polyethylene and polystyrene. Transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), and wide-angle x-ray scattering (WAXS) reveal that microlayer polyethylene, where the layer thickness is on the order of several microns, crystallizes with the normal unoriented lamellar morphology. In nanolayer films, where the film thickness of tens of nanometers is on the size scale of molecular dimensions, lamellae are oriented with the long axes perpendicular to the extrusion direction in a row-nucleated morphology similar to structures described in the literature. The lamellae are partially twisted about the long axes. The preferred twist angles of ±40° orient the lamellar surfaces normal to the layer surface. The row-nucleated morphology imparts highly anisotropic mechanical properties to the nanolayer polyethylene.  相似文献   

4.
5.
Ultrathin films were fabricated using synthesized hydroxyl polyimide (HPI) in a layer-by-layer fashion on amine-terminated substrates of silicon, quartz, and gold. The interlayer linkages were established by using terephthaloyl chloride as a bridging agent to form ester groups between HPI layers. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy, atomic force microscopy, ellipsometry, and electrochemical impedance spectroscopy were employed to study the interfacial chemistry, stepwise growth, morphology, thickness, optical property, and insulation behavior of the assembled film. The films show excellent stability and strength, which can be attributed to the covalent interlayer linkage.  相似文献   

6.
Layer-by-layer covalent assembly of an oligoimide on an anhydride- derivatized silicon dioxide surface is investigated using supercritical carbon dioxide (SCCO2) as the depositing medium. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), ellipsometry (VASE), UV-visible spectroscopy, electrochemical impedance spectroscopy, nano indentation, and atomic force microscopy (AFM) and the properties of the films compared with those of an oligoimide deposited on amine-derivatized surfaces. Films formed on the anhydride surface are more uniform and stable possibly because the silane precursor for the anhydride is anchored to the surface through two (-Si-O-Si-) tripods. XPS results indicate that the interfacial reaction resulting in amide formation is almost complete in the case of the anhydride, but not in the case of the amine. We infer that the twin tripods linking the anhydride group to the surface may have improved the accessibility of the functional groups for immobilization of the next layer, thereby contributing to the better quality.  相似文献   

7.
Assembly of ultrathin polymer multilayer films by click chemistry   总被引:1,自引:0,他引:1  
Layer-by-layer (LbL) assembly is a versatile and robust technique for fabricating tailored thin films of diverse composition. Herein we report a new method of covalent coupling, click chemistry, to facilitate the LbL assembly of thin films. Linear film growth was observed using both UV-vis and FTIR spectroscopy, and film thicknesses were determined by ellipsometry and atomic force microscopy. The assembled films are shown to be stable in a wide pH range. This technique offers the potential to enable the synthesis of new types of stable and responsive LbL films from a variety of polymers.  相似文献   

8.
Recent progresses in the self assembly of ultrathin polymer films are described. Bilayer membranes of polymeric hydrogen-bond networks are formed in water. Two-dimensional networks of organic and inorganic polymers are formed in cast films of synthetic bilayer membranes to give stable multilayer films upon removal of the matrices. The monolayer at the air-water interface constitutes suitable templates for 2D polymer networks, and it may be either removed or part of the 2D film. Successive adsorption of polycations and polyanions under carefully controlled conditions produces layered polyion complexes in the stepwise manner. Various polymer chains are epitaxially adsorbed onto graphite. All these results indicate that molecularly defined 2D polymer structures are readily available.  相似文献   

9.
10.
《Supramolecular Science》1998,5(5-6):649-655
Liquid crystal (LC) alignment techniques based on various kinds of ultrathin organized molecular films are reviewed. The mechanisms of LC alignment on the organized films are discussed. For the homeotropic alignment of LCs the main anchoring mechanism is due to the dipole–dipole interaction between polar groups of an aligning agent and LC molecules while the homogeneous alignment is mainly attributed to the orientation of polymer chains or polymer aggregates. An experimental system for an anchoring transition induced by a conformation change of aligning molecules is introduced. Finally the AFM experimental observations on the rubbed polymer films and its mechanisms are summarized.  相似文献   

11.
《Supramolecular Science》1997,4(1-2):141-146
Self-assembled monolayers (SAMs) on surfaces may be used as molecular templates for the selective deposition of polymer multilayer films. SAMs of ω-functionalized alkane thiolates are patterned onto gold surfaces with micron scale features using the microcontact printing method; glass substrates can also be patterned with trichloroalkylsilane SAMs. Patterned polymeric monolayer and multilayer films are adsorbed atop the SAM from dilute polymer solutions using ionic macromolecular self-assembly techniques which have been developed recently. The effects of polymer molecular weight and ionic content, as well as the use of a second SAM in the unpatterned regions to promote selectivity are discussed. Surface roughness, selectivity and other film properties are presented. It is demonstrated that this technique can be used successfully in the patterning of micron scale features with multilayers of low molecular weight upon adsorption from dilute solution.  相似文献   

12.
The electrochemical multilayer films of crown-shaped polyoxomolybdate Na21{[Na5(H2O)14] intersection[Mo(V)(20)Mo(VI)(26)O134(OH)10(mu-CH3COO)4]}.CH3COONa.90H2O (Mo46) and polyelectrolytes by layer-by-layer assembly were investigated. The stable multilayer films were assembled by alternate adsorption of negatively charged POM and positively charged polyelectrolytes is from their aqueous dispersions. UV-vis spectroscopy and cyclic voltammetry were used to monitor the regular growth of the multilayer films. The multilayer films-modified ITO electrode was used for the detection of electrocatalytic activity toward the reduction of nitrite, bromate, and hydrogen peroxide. The proposed novel immobilized method exhibited good stability, reproducibility and high sensitivity for the determination of electrocatalytic, which is important for practical application.  相似文献   

13.
Localized patterns of amine-terminated monolayers obtained via the surface modification of a monolayer with the biased probe of an atomic force microscope were used to covalently attach buckminsterfullerene or dendrimers to the surface, affording lines as narrow as 20 nm.  相似文献   

14.
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) is a very sensitive technique to characterize the degree of molecular ordering in thin films on metallic surfaces. This is the first report of the coupling of a PM-IRRAS microscope to a free electron laser (FEL), a light source of highest brilliance. Some FELs emit in the infrared region and permit the mapping of molecular properties at high lateral resolution. We studied the molecular orientation of octadecanephosphonic acid (OPA) attached to a gold surface with microstructured aluminum oxide islands on the gold. The spatial resolution achieved is 12 μm which corresponds to the diffraction limit of the infrared light used in this study. This is a substantial improvement compared to previous studies using a PM-IRRA accessory together with a commercial Fourier transform infrared spectrometer, where the lateral resolution is noise-limited rather than diffraction-limited. The spectral maps reveal that OPA is preferably attached to the aluminum oxide islands via the bidentate binding mode whereas the tridentate mode is dominating in case of OPA attached to the gold areas.  相似文献   

15.
Ultrathin films of cellulose nanocrystals (CNCs) are obtained by using a convective assembly setup coupled with a low-strength external AC electric field. The orientation and degree of alignment of the rod-like nanoparticles are controlled by the applied field strength and frequency used during film formation. Calculated dipole moments and Clausius-Mossotti factors allowed the determination of the critical frequencies, the peak dielectrophoresis as well as the principal orientation of the CNCs in the ultrathin films. As a result of the combination of shear forces and low electric field highly ultrathin films with controlled, unprecedented CNC alignment are achieved.  相似文献   

16.
An ultrathin titania film with molecular-sized cavities was synthesized by treating a ca. 8 nm thick (TiO2)3(dendrimer)(TiO2)2 sandwich film with activated oxygen gas.  相似文献   

17.
The assembly of polyelectrolytes and gold nanoparticles yields stratified multilayers with very low roughness and high structural perfection. The films are prepared by spin-assisted layer-by-layer self-assembly (LbL) and are characterized by X-ray reflectivity (XRR), UV-vis spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM). Typical structures have four repeat units, each of which consists of eight double layers (DL) of poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride), one monolayer of gold nanoparticles (10 nm diameter), and another layer of poly(allylamine hydrochloride). XRR scans show small-angle Bragg peaks up to seventh order, evidencing the highly stratified structure. Pronounced Kiessig fringes indicate a low global roughness, which is confirmed by local AFM measurements. TEM images corroborate the layered structure in the growth direction and nicely show the distinct separation of the individual particle layers. An AFM study reveals the lateral gold particle distribution within one individual particle layer. Interestingly, the spin-assisted deposition of polyelectrolytes reduces the roughness induced by the particle layers, leading to self-healing of roughness defects and a rather perfect stratification.  相似文献   

18.
We reported on hydrogen-bonding directed Layer-by-Layer assemblies by self-deposition of a kind of dendrimer bearing carboxyl groups on its periphery that act as hydrogen bonding donor as well as hydrogen bonding acceptor.  相似文献   

19.
The role of molecular structure, charge, and hydrophobicity in polyelectrolyte layer-by-layer assembly (LbL) of thin films has been studied using the model polypeptides poly-L-glutamatic acid (PLGA) and poly-L-lysine (PLL), quartz crystal microbalance (QCM), and circular dichroism spectroscopy (CD). The adsorption behavior of PLGA and PLL has been compared with the structure of these molecules in aqueous solution under the same conditions. The data show that the deposition of polypeptide per adsorption step scales with average secondary structure content, whether alpha helix or beta sheet. This is contrary to the expectation based on the view that hydrogen bonds are crucial to polypeptide film assembly, because secondary structure formation in a polypeptide reduces its intermolecular hydrogen-bonding potential. The data also show that polypeptide adsorption scales with ionic strength and chain length. Taken together, the results increase knowledge of polypeptide-based LbL thin film fabrication and will help to provide a firmer foundation for the use of natural or designed polypeptides in LbL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号