首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, negatons, positons, and complexiton solutions of higher order for a non-isospectral KdV equation, the KdV equation with loss and non-uniformity terms are obtained through the bilinear Baicklund transformation. Further, the properties of some solutions are shown by some figures made by using Maple.  相似文献   

2.
In this paper, a discrete KdV equation that is related to the famous continuous KdV equation is studied. First, an integrable discrete KdV hierarchy is constructed, from which several new discrete KdV equations are obtained. Second, we correspond the first several discrete equations of this hierarchy to the continuous KdV equation through the continuous limit. Third, the generalized (m, 2Nm)-fold Darboux transformation of the discrete KdV equation is established based on its known Lax pair. Finally, the diverse exact solutions including soliton solutions, rational solutions and mixed solutions on non-zero seed background are obtained by applying the resulting Darboux transformation, and their asymptotic states and physical properties such as amplitude, velocity, phase and energy are analyzed. At the same time, some soliton solutions are numerically simulated to show their dynamic behaviors. The properties and results obtained in this paper may be helpful to understand some physical phenomena described by KdV equations.  相似文献   

3.
The nonlocal symmetries for the higher-order KdV equation are obtained with the truncated Painlev′e method. The nonlocal symmetries can be localized to the Lie point symmetries by introducing suitable prolonged systems.The finite symmetry transformations and similarity reductions for the prolonged systems are computed. Moreover, the consistent tanh expansion(CTE) method is applied to the higher-order KdV equation. These methods lead to some novel exact solutions of the higher-order KdV system.  相似文献   

4.
In this paper, we obtain some new explicit travelling wave solutions of the perturbed KdV equation through recent factorization techniques that can be performed when the coefficients of the equation fulfill a certain condition. The solutions are obtained by using a two-step factorization procedure through which the perturbed KdV equation is reduced to a nonlinear second order differential equation, and to some Bernoulli and Abel type differential equations whose solutions are expressed in terms of the exponential andWeierstrass functions.  相似文献   

5.
Ping Liu 《中国物理 B》2021,30(8):80203-080203
We study a forced variable-coefficient extended Korteweg-de Vries (KdV) equation in fluid dynamics with respect to internal solitary wave. Bäcklund transformations of the forced variable-coefficient extended KdV equation are demonstrated with the help of truncated Painlevé expansion. When the variable coefficients are time-periodic, the wave function evolves periodically over time. Symmetry calculation shows that the forced variable-coefficient extended KdV equation is invariant under the Galilean transformations and the scaling transformations. One-parameter group transformations and one-parameter subgroup invariant solutions are presented. Cnoidal wave solutions and solitary wave solutions of the forced variable-coefficient extended KdV equation are obtained by means of function expansion method. The consistent Riccati expansion (CRE) solvability of the forced variable-coefficient extended KdV equation is proved by means of CRE. Interaction phenomenon between cnoidal waves and solitary waves can be observed. Besides, the interaction waveform changes with the parameters. When the variable parameters are functions of time, the interaction waveform will be not regular and smooth.  相似文献   

6.
丁海勇  徐西祥  杨宏祥 《中国物理》2005,14(9):1687-1690
In this paper, an extended functional transformation is given to solve some nonlinear evolution equations. This function, in fact,is a solution of the famous KdV equation, so this transformation gives a transformation between KdV equation and other soliton equations. Then many new exact solutions can be given by virtue of the solutions of KdV equation.  相似文献   

7.
New Solitary Wave Solutions to the KdV-Burgers Equation   总被引:12,自引:0,他引:12  
Based on the analysis on the features of the Burgers equation and KdV equation as well as KdV-Burgers equation, a superposition method is proposed to construct the solitary wave solutions of the KdV-Burgers equation from those of the Burgers equation and KdV equation, and then by using it we obtain many solitary wave solutions to the KdV-Burgers equation, some of which are new ones.PACS: 02.30.Jr; 03.65.Ge  相似文献   

8.
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.  相似文献   

9.
Using some limiting procedures, the solutions of the fifth order KdV equation ut + (μu2+ υuxx + αuuxx + βux2 + γu3 + δuxxxx)x = 0 would degenerate into the solutions of a simple equation, say KdV equation. In this letter, we analyze the possibility of the inverse procedure of the limiting process mentioned above for the travelling wave solutions. The results show that the procedure for deforming a travelling wave solution of the KdV equation to that of the generalized fifth order KdV equation can be accomplished by some pure algebraic tricks. Moreover, this inverse procedure is not unique in general.  相似文献   

10.
毛杰健  杨建荣 《物理学报》2007,56(9):5049-5053
用普通KdV方程作变换,构造变系数广义KdV方程的解,获得了变系数广义KdV方程新的Jacobi椭圆函数精确解、类孤波解、三角函数解和Weierstrass椭圆函数解. 关键词: KdV方程 变系数广义KdV方程 类孤波解 精确解  相似文献   

11.
In this paper, the bilinear integrability for B-type KdV equation have been explored. According to the relation to tau function, we find the bilinear transformation and construct the bilinear form with an auxiliary variable of the B-type KdV equation. Based on the truncation form, the Bäcklund transformation has been constructed. Furthermore, the N-soliton solutions and Riemann-theta function 1-periodic solutions of the B-type KdV equation are obtained.  相似文献   

12.
用普通Korteweg-de Vries(KdV)方程作变换,构造(3 1)维KdV方程的解,获得了新的孤子解、Jaoobi椭圆函数解、三角函数解和Weierstrass椭圆函数解.  相似文献   

13.
张全举  屈长征 《中国物理》2002,11(3):207-212
We study a third-order nonlinear evolution equation, which can be transformed to the modified KdV equation, using the Lie symmetry method. The Lie point symmetries and the one-dimensional optimal system of the symmetry algebras are determined. Those symmetries are some types of nonlocal symmetries or hidden symmetries of the modified KdV equation. The group-invariant solutions, particularly the travelling wave and spiral wave solutions, are discussed in detail, and a type of spiral wave solution which is smooth in the origin is obtained.  相似文献   

14.
With the aid of a gauge transformation, we propose a Darboux transformation for a four-component KdV equation. As an application, we obtain some explicit solutions for the four-component KdV equation.  相似文献   

15.
In this letter we consider a limit symmetry of the modified KdV equation and its application. The similarity reduction leads to limit solutions of the modified KdV equation. Besides, a modified KdV equation with new self-consistent sources is obtained and its solutions are derived.  相似文献   

16.
Using the extension homogeneous balance method,we have obtained some new special types of soliton solutions of the (2 1)-dimensional KdV equation.Starting from the homogeneous balance method,one can obtain a nonlinear transformation to simple (2 1)-dimensional KdV equation into a linear partial differential equation and two bilinear partial differential equations.Usually,one can obtain only a kind of soliton-like solutions.In this letter,we find further some special types of the multisoliton solutions from the linear and bilinear partial differential equations.``  相似文献   

17.
朱加民  郑春龙  马正义 《中国物理》2004,13(12):2008-2012
A general mapping deformation method is applied to a generalized variable coefficient KdV equation. Many new types of exact solutions, including solitary wave solutions, periodic wave solutions, Jacobian and Weierstrass doubly periodic wave solutions and other exact excitations are obtained by the use of a simple algebraic transformation relation between the generalized variable coefficient KdV equation and a generalized cubic nonlinear Klein-Gordon equation.  相似文献   

18.
Using the extension homogeneous balance method,we have obtained some new special types of soliton solutions of the (2+1)-dimensional KdV equation.Starting from the homogeneous balance method,one can obtain a nonlinear transformation to simple (2+1)-dimensional KdV equation into a linear partial differential equation and two bilinear partial differential equations.Usually,one can obtain only a kind of soliton-like solutions.In this letter,we find further some special types of the multisoliton solutions from the linear and bilinear partial differential equations.  相似文献   

19.
We consider a generalized fifth-order KdV equation with time-dependent coefficients exhibiting higher-degree nonlinear terms. This nonlinear evolution equation describes the interaction between a water wave and a floating ice cover and gravity-capillary waves. By means of the subsidiary ordinary differential equation method, some new exact soliton solutions are derived. Among these solutions, we can find the well known bright and dark solitons with sech and tanh function shapes, and other soliton-like solutions. These solutions may be useful to explain the nonlinear dynamics of waves in an inhomogeneous KdV system supporting high-order dispersive and nonlinear effects.  相似文献   

20.
In this paper,some new formal similarity reduction solutions for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation are derived.Firstly,we derive the similarity reduction of the NNV equation with the optimal system of the admitted one-dimensional subalgebras.Secondly,by analyzing the reduced equation,three types of similarity solutions are derived,such as multi-soliton like solutions,variable separations solutions,and KdV type solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号