首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We perform Monte Carlo simulations on the hard-core attractive Yukawa system to test the optimized Baxter model that was introduced by Prinsen and Odijk [J. Chem. Phys. 121, 6525 (2004)] to study a fluid phase of spherical particles interacting through a short-range pair potential. We compare the chemical potentials and pressures from the simulations with analytical predictions from the optimized Baxter model. We show that the model is accurate to within 10% over a range of volume fractions from 0.1 to 0.4, interaction strengths up to three times the thermal energy, and interaction ranges from 6% to 20% of the particle diameter, and performs even better in most cases. We furthermore establish the consistency of the model by showing that the thermodynamic properties of the Yukawa fluid computed via simulations may be understood on the basis of one similarity variable, the stickiness parameter defined within the optimized Baxter model. Finally, we show that the optimized Baxter model works significantly better than an often used, naive method determining the stickiness parameter by equating the respective second virial coefficients based on the attractive Yukawa and Baxter potentials.  相似文献   

2.
3.
The liquid-vapor phase diagram and surface tension for hard-core Yukawa potential with 4相似文献   

4.
A density functional theory is proposed for an inhomogeneous hard-core Yukawa (HCY) fluid based on Rosenfeld's perturbative method. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-core repulsion and a quadratic functional Taylor expansion for the long-ranged attractive or repulsive interactions. To test the established theory, grand canonical ensemble Monte Carlo simulations are carried out to simulate the density profiles of attractive and repulsive HCY fluid near a wall. Comparison with the results from the Monte Carlo simulations shows that the present density functional theory gives accurate density profiles for both attractive and repulsive HCY fluid near a wall. Both the present theory and simulations suggest that there is depletion for attractive HCY fluid at low temperature, but no depletion is found for repulsive HCY fluid. The calculated results indicate that the present density functional theory is better than those of the modified version of the Lovett-Mou-Buff-Wertheim and other density functional theories. The present theory is simple in form and computationally efficient. It predicts accurate radial distribution functions of both attractive and repulsive HCY fluid except for the repulsive case at high density, where the theory overestimates the radial distribution function in the vicinity of contact.  相似文献   

5.
统计方法在提高密度泛函理论准确性的研究进展   总被引:1,自引:0,他引:1  
介绍了神经网络方法、线性回归分析方法和支持向量机模型的原理及其对密度泛函理论计算结果修正的研究进展.这3种统计方法在改进密度泛函理论计算结果准确性方面均有着很大的作用.最后讨论了3种方法亟待解决的问题并对其发展进行了展望.  相似文献   

6.
Mean field density functional theory (MFDFT) has been employed to calculate the free energy of a pair of attractive hard rods on a ring. The results for homogeneous and optimal inhomogeneous density profiles have been compared with the exact free energy as a test of the approach. We discuss the problems in applying MFDFT to small systems and suggest modifications which allow a reasonably accurate treatment of this particular, rather extreme, case.  相似文献   

7.
We present a density functional theory study of interactions between spherical colloidal particles in amphiphile solutions. Theory is found to be in good agreement with previously published molecular dynamics simulations. It is used to analyze the effect of the amphiphile solution bulk density, the chain length, and the solvent mole fraction on the potential of mean force between the particles. The general features of the potential of mean force are rationalized in terms of formation of layers and bilayers of amphiphilic molecules in the intercolloidal gap. Theory yields the same general trends as observed in simulations and in experiments. In particular, the computed mean force changes its character from repulsive to attractive and back to repulsive as the solvent mole fraction is gradually increased.  相似文献   

8.
The grand canonical ensemble Monte Carlo simulation and density-functional theory are applied to calculate the structures, local mole fractions, and adsorption isotherms of binary hard-core Yukawa mixtures in a slitlike pore as well as the radial distribution functions of bulk mixtures. The excess Helmholtz energy functional is a combination of the modified fundamental measure theory of Yu and Wu [J. Chem. Phys. 117, 10156 (2002)] for the hard-core contribution and a corrected mean-field theory for the attractive contribution. A comparison of the theoretical results with the results from the Monte Carlo simulations shows that the corrected theory improves the density profiles of binary hard-core Yukawa mixtures in the vicinity of contact over the original mean-field theory. Both the present corrected theory and the simulations suggest that depletion and desorption occur at low temperature, and the local segregation can be observed in most cases. For binary mixtures in the hard slitlike pore, the present corrected theory predicts more accurate surface excesses than the original one does, while in the case of the attractive pore, no improvement is found in the prediction of a surface excess of the smaller molecule.  相似文献   

9.
Because of the increasing interest in studying the phenomenon exhibited by charge-stabilized colloidal suspensions in confining geometry, we present a density functional theory (DFT) for a hard-core multi-Yukawa fluid. The excess Helmholtz free-energy functional is constructed by using the modified fundamental measure theory and Rosenfeld's perturbative method, in which the bulk direct correlation function is obtained from the first-order mean spherical approximation. To validate the established theory, grand canonical ensemble Monte Carlo (GCMC) simulations are carried out to determine the density profiles and surface excesses of multi-Yukawa fluid in a slitlike pore. Comparisons of the theoretical results with the GCMC data suggest that the present DFT gives very accurate density profiles and surface excesses of multi-Yukawa fluid in the slitlike pore as well as the radial distribution functions of the bulk fluid. Both the DFT and the GCMC simulations predict the depletion of the multi-Yukawa fluid near a nonattractive wall, while the mean-field theory fails to describe this depletion in some cases. Because the simple form of the direct correlation function is used, the present DFT is computationally as efficient as the mean-field theory, but reproduces the simulation data much better than the mean-field theory.  相似文献   

10.
In this study we have introduced a formulation of time-dependent density functional theory (TDDFT) based on a noncollinear exchange-correlation potential. This formulation is a generalization of conventional TDDFT. The form of this formulation is exactly the same as that of the conventional TDDFT for the excitation energies of transitions that do not involve spin flips. In addition, this noncollinear TDDFT formulation allows for spin-flip transitions. This feature makes it possible to resolve more fully excited state spin multiplets, while for closed-shell systems, the spin-flip transitions will result in singlet-triplet excitations and this excitation energy calculated from this formulation of TDDFT is exactly the same as that from ordinary TDDFT. This formulation is applied to the dissociation of H(2) in its (1)Sigma(g) (+) ground state and (1)Sigma(u) (+) and (3)Sigma(u) (-) excited states with (3)Sigma(u) (-) (M(s)=+1) as the reference state and the multiplets splitting of some atoms.  相似文献   

11.
Odd-even effects of short-circuit current density and power conversion efficiency (PCE) are an interesting phenomenon in some organic solar cells. Although some explanations have been given, why they behave in such a way is still an open question. In the present work, we investigate a set of acceptor-donor-acceptor simple oligomer-like small molecules, named the DRCNnT (n = 5-9) series, to give an insight into this phenomenon because the solar cells based on them have high PCE (up to 10.08%) and show strong odd-even effects in experiments. By modeling the DRCNnT series and using density functional theory, we have studied the ground-state electronic structures of the DRCNnT (n = 5-9) series in condensed phase. The calculated results reproduce the experimental trends well. Furthermore, we find that the exciton-binding energies of the DRCNnT series may be one of the key parameters to explain this phenomenon because they also show odd-even effects. In addition, by studying the effects of alkyl branch and terminal group on odd-even effects of dipole moment, we find that eliminating one or two alkyl branches does not break the odd-even effects of dipole moments, but eliminating one or two terminal groups does. Finally, we conclude that removing one alkyl branch close to the terminal group of DRCN5T can decrease highest occupied molecular orbital (HOMO) energy (thus increasing open circuit voltage) and increase dipole moment (thus enhancing charge separation and short-circuit current). This could be a new and simple method to increase the PCE of DRCN5T-based solar cells.  相似文献   

12.
An interaction energy decomposition analysis method based on the block-localized wavefunction (BLW-ED) approach is described. The first main feature of the BLW-ED method is that it combines concepts of valence bond and molecular orbital theories such that the intermediate and physically intuitive electron-localized states are variationally optimized by self-consistent field calculations. Furthermore, the block-localization scheme can be used both in wave function theory and in density functional theory, providing a useful tool to gain insights on intermolecular interactions that would otherwise be difficult to obtain using the delocalized Kohn-Sham DFT. These features allow broad applications of the BLW method to energy decomposition (BLW-ED) analysis for intermolecular interactions. In this perspective, we outline theoretical aspects of the BLW-ED method, and illustrate its applications in hydrogen-bonding and π-cation intermolecular interactions as well as metal-carbonyl complexes. Future prospects on the development of a multistate density functional theory (MSDFT) are presented, making use of block-localized electronic states as the basis configurations.  相似文献   

13.
14.
Existing density functional theory (DFT) methods are typically very effective in capturing dynamic correlation, but run into difficulty treating near-degenerate systems where static correlation becomes important. In this work, we propose a configuration interaction (CI) method that allows one to use a multireference approach to treat static correlation but incorporates DFT's efficacy for the dynamic part as well. The new technique uses localized charge or spin states built by a constrained DFT approach to construct an active space in which the effective Hamiltonian matrix is built. These local configurations have significantly less static correlation compared to their delocalized counterparts and possess an essentially constant amount of self-interaction error. Thus their energies can be reliably calculated by DFT with existing functionals. Using a small number of local configurations as different references in the active space, a simple CI step is then able to recover the static correlation missing from the localized states. Practical issues of choosing configurations and adjusting constraint values are discussed, employing as examples the ground state dissociation curves of H(2) (+), H(2), and LiF. Excellent results are obtained for these curves at all interatomic distances, which is a strong indication that this method can be used to accurately describe bond breaking and forming processes.  相似文献   

15.
The conformational behavior and infrared spectrum of l-phenylalanine were studied by matrix-isolation infrared spectroscopy and DFT [B3LYP/6-311++G(d,p)] calculations. The fourteen most stable structures were predicted to differ in energy by less than 10 kJ mol(-1), eight of them with abundances higher than 5% at the temperature of evaporation of the compound (423 K). Experimental results suggest that six conformers contribute to the spectrum of the isolated compound, whereas two conformers (IIb(3) and IIIb(3)) relax in matrix to a more stable form (IIb(2)) due to low energy barriers for conformational isomerization (conformational cooling). The two lowest-energy conformers (Ib(1), Ia) differ only in the arrangement of the amino acid group relative to the phenyl ring; they exhibit a relatively strong stabilizing intramolecular hydrogen bond of the O-H...N type and the carboxylic group in the trans configuration (O=C-O-H dihedral angle ca. 180 degrees ). Type II conformers have a weaker H-bond of the N-H...O=C type, but they bear the more favorable cis arrangement of the carboxylic group. Being considerably more flexible, type II conformers are stabilized by entropy and the relative abundances of two conformers of this type (IIb(2) and IIc(1)) are shown to significantly increase with temperature due to entropic stabilization. At 423 K, these conformers are found to be the first and third most abundant species present in the conformational equilibrium, with relative populations of ca. 15% each, whereas their populations could be expected to be only ca. 5% if entropy effects were not taken into consideration. Indeed, phenylalanine can be considered a notable example of a molecule where entropy plays an essential role in determining the relative abundance of the possible low-energy conformational states and then, the thermodynamics of the compound, even at moderate temperatures. Upon UV irradiation (lambda > 235 nm) of the matrix-isolated compound, unimolecular photodecomposition of phenylalanine is observed with production of CO(2) and phenethylamine.  相似文献   

16.
An understanding of the amino acid sequence dependent stability of polypeptides is of renowned interest to biophysicists and biochemists, in order to identify the nature of forces that stabilize the three-dimensional structure of proteins. In this study, the role of various collagen triplets influencing the stability of collagen has been addressed. It is found from this study that proline can stabilize the collagen triplet only when other residues are also in the polyproline II conformation. Solvation studies of various triplets indicate that the presence of polar residues increases the free energy of solvation. Especially the triplets containing arginine residues displays a higher solvation free energy. The chemical hardness of all the triplets in collagen-like conformation has been found to be higher than that in the extended conformation. Studies on Gly–XY, Gly–X–Hyp, and Gly–Pro–Y triplets confirm that there will be local variations in the stability of collagen along the entire sequence.  相似文献   

17.
Density functional theory calculations for the structure and conformational equilibrium of thiacalix[4]arene are reported. The conformational equilibrium of thiacalix[4]arene, a heterocalixarene in which the phenol groups are bridged by sulphur atoms is compared to the conformational equilibrium of calix[4]arene. Thiacalix[4]arene conformational energies relative to the cone conformer (ΔE's) are reduced in comparison with calix[4]arene. This conformational change is in qualitative agreement with recent NMR spectroscopy measurements of the conformational equilibrium for a tetraethylether of thiacalix[4]arene in a CDCl3 solution which indicates an enhanced chemical exchange of thiacalixarene conformers in comparison with similar methylene bridged structures. Density functional theory results for the structure of thiacalix[4]arene are in good agreement with recent X-ray diffraction measurements. The electrostatic potentials in the cone conformers of thiacalix[4]arene and calix[4]arene suggest that their complexation or recognition abilities can be significantly different. Dipole moments of the four thiacalix[4]arene conformers are in the order: cone>1,2-alternate>partial-cone>1,3-alternate.  相似文献   

18.
19.
The exact one-electron matrix quasirelativistic theory [Kutzelnigg and Liu, J. Chem. Phys. 123, 241102 (2005)] is extended to the effective one-particle Kohn-Sham scheme of density functional theory. Several variants of the resultant theory are discussed. Although they are in principle equivalent, consideration of computational efficiency strongly favors the one (F(+)) in which the effective potential remains untransformed. Further combined with the atomic approximation for the matrix X relating the small and large components of the Dirac spinors as well as a simple ansatz for correcting the two-electron picture change errors, a very elegant, accurate, and efficient infinite-order quasirelativistic approach is obtained, which is far simpler than all existing quasirelativistic theories and must hence be regarded as a breakthrough in relativistic quantum chemistry. In passing, it is also shown that the Dirac-Kohn-Sham scheme can be made as efficient as two-component approaches without compromising the accuracy. To demonstrate the performance of the new methods, atomic calculations on Hg and E117 are first carried out. The spectroscopic constants (bond length, vibrational frequency, and dissociation energy) of E117(2) are then reported. All the results are in excellent agreement with those of the Dirac-Kohn-Sham calculations.  相似文献   

20.
Hydrolysis of cisplatin, the most widely used anticancer drug in the world, is believed to be the key activation step before the drug reaching its intracellular target DNA.To obtain an accurate hydrolysis theory for this important class of square-planar Pt(II) complexes, three typical reactions, i.e., the first and second hydrolyses of cisplatin and the hydrolysis of [Pt(dien)Cl](+) (dien = diethylenetriamine), were studied at the experimental temperature with the solvent effect using mPW1PW91/SDD from a comprehensive methodological study on the Hartree-Fock (HF) ab initio method, electron correlation methods, pure density functional theory (DFT) methods, and hybrid HF-DFT methods with several basis sets. The true five stationary states in the second-order nucleophilic substitution (S(N)2) pathway for the hydrolysis process, namely, reactant (R) --> intermediate 1 (I1) --> TS --> intermediate 2 (I2) --> product (P) were obtained and characterized theoretically for the first time. The most remarkable structural variations and the associated atomic charge variations in the hydrolysis process were found to occur in the equatorial plane of the five-coordinate trigonal-bipyramidal (TBP)-like structures of I1, TS, and I2. The reaction with the TS structure of smaller L-M-E angle and more lengthened M-L and M-E bonds was found to have a smaller Gibbs free energy change and accordingly the better hydrolysis yield. It is found that the sum of the three concentric angles in the TBP's equator is near 360 degrees in I1 and I2 and is almost 360 degrees in TS in each reaction. The associated energy profiles again demonstrated a typical S(N)2 reaction curve. The computed forward and backward reaction enthalpy (Delta H(++)) and reaction entropy (Delta S(++)) in the rate-determining step I1 --> TS --> I2 are in good agreement with the experiments. Natural bonding orbital population analysis shows that the charge-separating extent follows the same order of Delta G in studied reactions. Comparing with the computational results of gas-phase reactions, it can be concluded that the solvent effect should be considered to obtain an accurate hydrolysis picture. The most affected structural parameters after solvation are related to the equatorial plane of the TBP-like geometry. The results provide theoretical guidance on detailed understanding on the mechanism of the hydrolysis of cisplatin, which could be useful in the design of novel Pt-based anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号