首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel thermotropic main-chain chiral liquid–crystalline random copolyesters consisting of spacers of two different types—chiral and achiral—was synthesized. Polyesters (BmTa) with tartaric acid as the chiral spacer (Ta), aliphatic diols (with ‘m’ = 2–10 methylene groups) as the achiral spacers, and 4,4′-dihydroxy biphenyl (B) as the mesogen were synthesized via condensation polymerization in solution after duly protecting the 2,3-dihydroxy groups of tartaric acid by acetylation. The copolymers were characterized by Fourier transform infrared spectroscopy, 1H and 13C NMR spectra, gel permeation chromatography, and thermogravimetric analysis. Transition temperatures for phase changes recorded by DSC were corroborated with the textures observed by a hot-stage optical polarizing microscope. The wide-angle X-ray diffraction (WAXD) profiles indicated a SmE phase at room temperature. The lower angle region at 2θ = 0.5–2.45 covered by WAXD indicated a layer of thickness of 161 Å, less than the molecular length for B0Ta. The [αD] values were recorded on a digital polarimeter. The birefringence was lost at higher mesophase temperatures in lower members with m < 5, a behavior found in certain chiral systems, and the higher members with m > 5 showed a lesser number of phase transitions. On cooling, the polyesters produced a texture with the formation of transition bars. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1743–1752, 2001  相似文献   

2.
Blends of poly(oxybenzoate-p-ethylene terephthalate) (POB-PET) and polyarylate were confirmed to be a partially miscible system by differential scanning calorimetry. When 60/40 POB-PET/PAr blend was annealed at high temperature (above 270°C) for several minutes, the ester–ester interchange (transesterification) in the blend took place immediately, as evidenced by Fourier Transformed infrared analyses. The analysis of the blend annealed at 290°C by 1H-13C nuclear magnetic resonance disclosed that there were four new diads appearing in 15 min and an additional one produced in 60 min during the heat treatment. The miscibility between POB-PET and polyarylate increased with the mol concentration of these new diads judging from differential scanning calorimetry. The evolution of the concentration of the diad ethylene glycol-isophthalate during the annealing can be described by a second-order reaction. The activation energy of forming the diad ethylene glycol-isophthalate was 26.5 kcal/mol, and the preexponential factor for the transesterification reaction is 3.7 × 108 min−1. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1959–1969, 1998  相似文献   

3.
Three series of novel thermotropic liquid crystalline polyurethane elastomers (TLCPUEs) were studied. Hard segments were formed by using hexamethylene diisocyanate (HDI) reacted with a mesogenic unit, benzene-1,4-di(4-iminophenoxy-n-hexanol), which also acted as a chain extender. Three diols: 1,10-decanediol,poly(oxytetramethylene) glycol (PTMEG) M n = 1000 and PTMEG M n = 2000 were used as the soft segments. The effects of soft segments of polyurethanes on the liquid crystalline behavior were studied. Higher molecular weight TLCPUEs were obtained by adding 30?50 mol % of mesogenic segments to diisocyanates. In contrast to a conventional chain extender such as 1,2-ethylene glycol or 1,4-butyl glycol, the synthesized polyurethane elastomers exhibited a mesophase transition by using a mesogenic unit as the chain extender. Mesophase was found for all synthesized LC polyurethanes except of polymers H2-A-12 and H2-A-7. The structures and the thermal properties of all synthesized TLCPUEs were studied by using FTIR spectroscopy, wide-angle x-ray diffraction (WAXD) and DSC measurements, a polarizing microscope equipped with a heating stage, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). Mechanical properties were also examined by using a tensilemeter. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The diamagnetic susceptibility of a series of random copolyesters, P(HB/HN), of 4-hydroxybenzoic acid (HBA) with 2-hydroxy-6-naphtoic acid (HNA) has been investigated, both, as a function of composition and temperature. It is shown that the molecular susceptibility of the uniaxially oriented samples linearly decreases with HB content. Results are discussed in terms of the increase in magnetic anisotropy occurring with the introduction of the HN groups. Furthermore, the temperature dependence of the specific susceptibility has been investigated. The diamagnetic susceptibility of these copolymers rises at the beginning of the solid-liquid crystalline transition. Above this temperature, the specific susceptibility exhibits a conspicuous time-dependent behavior which is a function of the temperature at the mesophase. After long storage times at the mesophase, and upon cooling at room temperature, the susceptibility shows values which approach those of a macroscopically isotropic state, i.e., a state with no overall preferred orientation. X-ray diffraction measurements confirm a relaxation mechanism of the molecular orientation occurring at temperatures above the melting point. A similar relaxation process is observed for samples with an initial planar orientation. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
To increase the thermal and mechanical properties of the aliphatic polyester poly(butylene succinate) (PBS), a series of potentially biodegradable liquid crystalline aromatic/aliphatic random copolyesters were prepared by melt polycondensation of new mesogenic monomers dimethyl 4,4′-(terephthaloyldioxy) dibenzoate (MTB), dimethyl succinate, and 1,4-butanediol. The synthesized copolyesters were characterized by means of proton nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC), viscosity measurements, differential scanning calorimetry (DSC), thermogravimetry (TG), X-ray diffraction (XRD), polarizing light microscopy (PLM) and mechanical property measurements. The MTB content was varied so that the effects of the mesogen content on the thermal and mechanical properties, degradable behaviours and mesophase were examined. It was found that introducing the rigid rod mesogens could increase the thermal stability and the mechanical properties, while it reduced the melting temperature (Tm), the crystallization temperature (Tc), the degree of relative crystallinity (Xc) and the hydrolytic degradation rate. Only the homopolyester poly(butylenes terephthaloyldioxy dibenzoates) was able to show the schlieren texture characteristic of nematics.  相似文献   

6.
以4,4′-(α,ω-亚烷基二酰氧)二联苯甲酰氯(M1)、顺式-4,4′-双(4-羟基苯基偶氮)二苯并-18-冠-6(M2)、反式-4,4′-双(4-羟基苯基偶氮)二苯并-18-冠-6(M3)和1,10-癸二醇(M4)为单体,通过溶液共缩聚反应,合成了两个系列新的含联苯型液晶基元和偶氮型冠醚环的主链型液晶共聚酯.共聚酯的[η]在0·25~0·35和0·27~0·38之间.单体的化学结构通过IR、UV-Vis、1H-NMR、MS和元素分析等方法确证.共聚酯的性质采用[η]、DSC、TGA、WAXD和POM等方法进行了研究.发现所有的共聚酯加热到各自熔融温度以上都能形成向列相液晶态,可以观察到向列相的丝状织构或纹影织构或球粒织构.共聚酯的熔融温度(Tm)和各向同性温度(Ti)随共聚酯分子中柔性间隔基长度的增加而有规律地降低,含反式冠醚环的共聚酯的Tm和Ti均高于相应含顺式冠醚环的共聚酯的Tm和Ti.  相似文献   

7.
8.
A novel series of main chain liquid crystalline copolyesters with X-shaped two-dimensional mesogenic unit and crown ether cycle of cis-4,4′-bis(4-hydroxyphenylazo) dibenzo-18-crown-6 was prepared via solution condensation polymerization from 4,4′-(α,ω-hexanedioyloxy) dibenzoyl dichloride (M1), 2,5-bis(p-octyloxybenzoyloxy) hydro-quinone (M2) and cis-4,4′-bis(4-hydroxyphenylazo) dibenzo-18-crown-6 (M3). Monomer M1 was synthesized by esterification and substitution of adipoyl chloride with p-hydroxybenzoic acid, monomer M2 was synthesized by esterfication and reduction reaction of 2,5-dihydroxybenzoquinone and p-octanoxybenzoyl chloride and monomer M3 was synthesized by diazotization and coupling reaction of cis-diaminodibenzo-18-crown-6 with phenol. The molecular weights of copolyesters are not high,and the intrinsic viscosity [η] of copolyesters ranges from 0.25-0.35. The monomers' structures were identified by using elemental analysis, IR, UV, 1H-NMR, MS, etc. All the copolyesters are yellowish powders and insoluble in THF and CHCl3 at room temperature except CP9. The properties of copolyesters were investigated by using GPC, [η] , DSC, TG,WAXD and POM. It was found that all the copolyesters entered into liquid crystal phase when they were heated to above their melting temperature (Tm). The typical smectic and nematic phase texture can be observed on POM. Their mesophase transition temperature and thermal stability change regularly with varying the content of cis-4,4′-bis(4-hydroxyphenylazo)dibenzo-18-crown-6 unit in the copolyesters.  相似文献   

9.
A new series of carbosilane liquid crystalline (LC) dendrimers from the first to the third generations with 8, 16 and 32 chiral terminal mesogenic groups, respectively, has been synthesized. The molecular structures and purity of all new compounds were confirmed by 1H NMR spectroscopy and GPC analysis. Data of polarization microscopy and SAX analysis demonstrated that all LC dendrimers synthesized form a chiral smectic SmC* phase at temperatures below 50 °C. It has been found that bistable electrooptical switching is observed for all dendrimers. The influence of chiral mesogenic fragment length on phase behavior and ferroelectric properties of carbosilane LC dendrimers is discussed.  相似文献   

10.
The synthesis and physical properties are described for a thermally stable liquid crystalline (LC) thermoset based on all aromatic ester units. The persistence of the liquid crystalline phase throughout the curing process was monitored with polarizing optical microscopy. The applicability of these new liquid crystalline thermosets has been evaluated for use as an adhesive for bonding metals, namely titanium. The failure of the adhesive bonds always occurs within the polymer; thus it can be inferred that bonding at the polymer-metal interface is very good. This strong interfacial bonding is attributed to low cure shrinkage and CTE matching of the underlying substrate by the LC resins. The cohesive properties and strength of the cured resin can be greatly enhanced by the addition of filler materials. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35:1061–1067, 1997  相似文献   

11.
A calorimetric study of blends of poly(ethylene terephthalate-co-p-oxybenzoate), PET/PHB, with poly(butylene terephthalate), PBT has been carried out in the form of as-spun and drawn fibres. DSC melting and crystallization results show that PBT is compatible with LCP and the crystallization of PBT decreases by the addition of LCP in the matrix. The crystallization behaviour of blend fibres is investigated as a function of temperature of crystallization. A detailed analysis of the crystallization course has been made utilizing the Avrami expression. The isothermal calorimetric measurements provide evidence of decrease of rate of crystallization of PBT on addition of the liquid crystalline component up to about 50% by weight. The values of the Avrami exponents change in the temperature range from 200° to 215°C. Dimensionality changes in crystallization could be due to LCP mesophase-transition.  相似文献   

12.
Summary The structures, textures as well as thermodynamic properties of a side chain polymer exhibiting a liquid crystalline phase in addition to a partially crystalline state and the isotropic fluid state were investigated. Furthermore the kinetics of phase transitions between these states were analyzed. It was found that the properties of this polymer are intermediate between that of low molecular weight liquid crystals and common polymers. In particular it was observed that the relation between the liquid crystalline texture and the structure is different from that of low molecular weight liquid crystals and that the properties of the crystalline and liquid crystalline state depend strongly on the tacticity of the polymer.
Zusammenfassung Für ein Seitenkettenpolymeres, das zusätzlich zum teilkristallinen Zustand und zur isotropen Schmelze einen flüssig-kristallinen Zustand aufweist, wurden die Strukturen und Texturen untersucht sowie thermodynamische Eigenschaften. Außerdem wurde die Kinetik der Phasenumwandlungen analysiert. Es zeigt sich, daß die Eigenschaften zwischen denen üblicher Polymerer und denen von niedrigmolekularen flüssigen Kristallen liegen. Insbesondere zeigte sich, daß die Beziehung zwischen molekularer Struktur und Textur von der bei niedrigmolekularen flüssigen Kristallen abweicht, und daß die Taktizität der Kette einen starken Einfluß auf die Eigenschaften nicht nur der kristallinen Phase sondern auch der flüssig-kristallinen Phase ausübt.
  相似文献   

13.
Pyrolysis–capillary gas chromatography combined with on-line alkylation has been employed for compositional analysis of liquid crystalline aromatic polyesters (LCPs) based on p- hydroxybenzoic acid. The fundamental conditions were examined using an LCP prepared from p-hydroxybenzoic acid, terephthalic acid, and 4,4′-biphenol and every constituent of a sample weighing ca. 50 μg was almost quantitatively recovered as its dimethyl derivative in the pyrogram obtained following pyrolysis at 400°C in the presence of 1 μl of 25% tetramethyl-ammonium hydroxide in methanol. The compositions of a variety of terpolyesters and LCPs containing isophthalic acid or 2-hydroxy-6-naphthoic acid units have been precisely deter-mined by pyrolysis-methylation GC.  相似文献   

14.
A series of fully aromatic thermotropic polyesters based on mono-, di-, and tetra-substituted biphenols was prepared by the melt polycondensation method and examined for their thermotropic behavior by a variety of experimental techniques. The homopolyesters obtained from substituted biphenols containing either one phenyl or two phenyl groups as substituent(s) and TA formed nematic melts, but the homopolymers of the substituted biphenols containing either four sec-butyl groups or two tert-butyl groups with TA had melting transitions, Tm, above 400°C. Thus, it was not possible to determine whether they formed nematic melts. On copolymerization with 30 mol % HBA most of the resulting copolyesters had much lower Tm values, compared to those of respective homopolyesters, and the copolymers of the biphenol monomer containing the tert-butyl groups formed a nematic melt at an observable temperature. However, the copolymer of the biphenol with sec-butyl groups still had a Tm above 400°C. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Four series of thermotropic polyurethane elastomers (TPUEs) were synthesized in this study. The hard segments were formed by using 4,4′-methylenedicyclohexyl diisocyanate (H12MDI) reacted with various mesogenic units, such as benzene-1,4-di(4-iminophenoxy-n-hexanol), benzene-1,4-di(4-iminophenol), and 3,3′-(4,4′-biphenylene)dipropanol, which also acted as the chain extender. Poly(oxytetramethylene)glycols (PTMEGs), PTMEG-2000 (Mn 2,000) and PTMEG-1000 (Mn 1,000) were used as a soft segment. The structures of all synthesized thermotropic liquid crystalline polyurethanes (TLCPUs) were characterized by FTIR spectroscopy. The effects of mesogenic units on the LC properties and elastic behaviors of LCPUs were studied. It was difficult to show LC behaviors for the PU elastomers derived from the mesogenic units with a lower aspect ratio, such as 3,3′-(4,4′-biphenylene)dipropanol, or the long soft segments, PTMEG-2000. In addition, these PU elastomers show better elastic properties by using a higher aspect ratio mesogenic unit as the chain extender, such as benzene-1,4-di(4-iminophenoxy-n-hexanol and benzene-1,4-di(4-imino-phenol)). The thermal properties were investigated by DSC measurements, thermal optical polarized microscopy, wide angle X-ray diffraction, dynamic mechanical analysis, and thermogravimetric analysis. The mechanical properties were measured by a tensilemeter. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
A series of liquid crystalline copolyesters, derived from 1,4‐hydroxy‐benzoic acid (HBA), 6‐hydroxy‐2‐naphthoic acid (HNA), terephthalic acid (TA), and hydroquinone (HQ), were prepared; crystallization, melting and solid‐state structure of the copolyesters were studied by using differential scanning calorimetry (DSC) and wide‐angle x‐ray diffraction (WAXD). It was found that the variation of melting point of the copolyesters with increasing HBA mol % exhibits eutectic melting behavior at a constant mole ratio of HNA, and the extrapolated eutectic temperature decreases linearly with increasing HNA mol %. WAXD analysis of the copolyesters indicates that the d‐spacing related to three‐dimensional order increases first and then decreases with increasing HBA mol %. The increase of the d‐spacing, consistent with looser packing of chains, leads to the reduction of melting point and most likely accounts for the eutectic behavior observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2171–2177, 2009  相似文献   

17.
The synthesis and characterization of aromatic polyesters containing various symmetrically di-substituted hydroquinone monomers is described. The homopolyesters made from these monomers and terephthalic acid (TA) did not melt. Copolyesters of TA with mono- and di-substituted hydroquinone formed liquid crystalline melts. Optical microscopy showed schlieren, marbled, and droplet textures characteristic of the nematic phase. DSC experiments were also in accord with mesophase formation as multiple transitions characteristic of first-order phase changes were found. In general, the crystal-nematic transition was about 300°C, whereas the nematic-isotropic change was over 400°C. All the polyesters were prone to decomposition near or above the isotropization temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
A new series of thermotropic liquid‐crystalline (LC) polyesters were prepared from a diacyl chloride derivative of 4,4′‐(terephthaloyldioxy)‐di‐4‐phenylpropionic acid (PTP) and glycols with a different number of methylene groups (n) [HO(CH2)n OH, n = 6–10, 12] by high‐temperature solution polycondensation in diphenyl oxide. PTP6/10 and PTP6/hydroquinone (H) LC copolyesters were also prepared according to a similar procedure. The chemical structure, LC, phase‐transition behaviors, thermal stability, and solubility were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H and 13C NMR spectra, differential scanning calorimetry (DSC), thermogravimetric analysis, and a polarizing light microscope. The melting and isotropization temperatures decreased in a zigzag manner as the number of n increased. All of the polyesters formed a nematic phase with the exception of PTP8. The temperature ranges of the mesophase (ΔT) were much wider for the polyesters with an odd number of n's than those with an even number. ΔT increased markedly for the PTP6/10 and PTP6/H copolyesters. The in vitro degradations of the polymers were ascertained by enzymatic hydrolysis and alkaline hydrolysis. The model compound, PTP dihexylester, was synthesized and found to be degraded into terephthalic acid, 3‐(4‐hydroxyphenyl)propionic acid, and 1‐hexanol by Rhizopus delemar lipase, but PTPn homopolyesters and PTP6/10 and PTP6/H copolyesters were resistant to Rhizopus delemar hydrolysis. They were degradable in a sodium hydroxide buffer solution of pH 12 at 60 °C, depending on the number of n's and the copolymer composition. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3043–3051, 2001  相似文献   

19.
The focus of this study is on incorporating pendant sulfonate groups along the backbone of a liquid crystalline polyester (LCPE) with the aim to improve the dispersion of single wall carbon nanotubes (SWNTs) and nanodiamonds (NDs). Two LCPE matrices, one sulfonated (LCPE‐S) and one nonsulfonated reference polymer (LCPE‐R), were successfully synthesized via a melt condensation method using aromatic and aliphatic AB, AA, and BB‐type monomers. Upon the introduction of SWNT and ND particles, the glass transition temperature (Tg) of the sulfonated LCPE increased from 21.5 °C to 41.0 °C and 41.9 °C, for SWNTs and NDs, respectively. When sulfonate groups were absent, a decrease in Tg was observed. The storage modulus (E′) followed a similar trend, i.e., E′ increased from 1.3 GPa to 5.2 GPa and 3.4 GPa, upon the addition of NDs and SWNTs. The LCPE‐S showed a lower thermal stability due to the loss of sulfonate groups, i.e. the 5% weight loss temperature (T) is ~280 °C for LCPE‐S vs. 333 °C for LCPE‐R. The decomposition temperature increased somewhat upon addition of the nanoparticles. The ability of dispersing carbon‐based nanostructures combined with an accessible melt processing window makes sulfonated LCPs attractive matrices towards preparing nanocomposites with improved thermal and mechanical properties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

20.
The transesterification kinetics of poly(ethylene terephthalate) (PET)/copoly(oxybenzoate-p-terephthalate) (liquid crystalline polymer, LCP) (70/30 by weight) in the presence of small amount of bis(2-oxazoline) (BOZ) as chain extender was studied by using 1H nuclear magnetic resonance. The kinetic data was treated as a second-order reversible reaction, and it was found that the rate constants of transesterification at 270, 280 and 290 °C were 1.55×10−2, 2.20×10−2 and 3.01×10−2 min−1, respectively, the value of which was higher than the blend without addition of BOZ, 1.26×10−2 min−1, and the activation energy of PET/LCP transesterification was 84.4 kJ mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号