首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Highly aligned Ag nanowires have been synthesized by dc electrodeposition within a hexagonal close-packed nanochannel anodic aluminum oxide template. The pore diameter varies from 20 nm to 50 nm depending on the anodization voltage and temperature for the two types of aqueous solutions, sulphuric and oxalic acids, respectively. The size and morphology of the Ag nanowire arrays were measured by scanning electron microscopy and transmission electron microscopy. The images indicate that the highly aligned Ag nanowires grow in the uniform nanochannels of the anodic alumina template and that the size of the nanowires depends on the size of the nanochannels. X-ray diffraction, selected area electron diffraction pattern and high-resolution transmission electron microscopy images show that the Ag nanowires are single-crystal. The temperature coefficient of resistivity (temperature range from 4.2 K to 300 K) of the Ag nanowire arrays decreases with decreasing diameter of the nanowires. Received: 5 November 2001 / Revised version: 12 March 2002 / Published online: 6 June 2002  相似文献   

2.
Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.  相似文献   

3.
Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al2O3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.  相似文献   

4.
Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed.  相似文献   

5.
Well crystallized and homogeneous LiFePO4/C (LFPO) thin films have been grown by pulsed laser deposition (PLD). The targets were prepared by the sol-gel process at 600 °C. The structure of the polycrystalline powders was analyzed with X-ray powder diffraction (XRD) data. The XRD patterns were indexed having a single phase olivine structure (Pnma). LFPO thin films have been deposited on three different substrates: aluminum (Al), stainless steel (SS) and silicon (Si) by pulsed laser deposition (PLD). The structure of the films was analyzed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). It is found that the crystallinity of the thin films depends on the substrate temperature which was set at 500 °C. When annealed treatments were used, secondary phases were found, so, one step depositions at 500 °C were made.Stainless steel is demonstrated to be the best choice to act as substrate for phosphate deposition. LiFePO4 thin films grown on stainless steel plates exhibited the presence of carbon, inducing a slight conductivity enhancement that makes these films promising candidates as one step produced cathodes in Li-ion microbatteries.  相似文献   

6.
Using a low-temperature wafer bonding process, InP substrates are bonded to silicon-on-insulator (SOI) substrates at 220 °C. A combination of oxygen plasma and chemical treatment results in a direct contact bonding at room temperature. After the bonding process at 220 °C for 45 min, removal of the Si handle substrate by sacrificial etching of the buried oxide layer in SOI, results in a thin membrane of Si robustly bonded to InP. The thin Si membrane bonded to InP shows uniformly bonded interface under high-resolution electron microscopy. Micro-Raman analysis has also been carried out to study the bonded interface. I-V characteristics of the bonded structures suggest that such bonding and layer transfer processes are suitable for device integration.  相似文献   

7.
One-dimensional protein nanostructures have many potential applications in the biomedical field. In this article, protein nanotubes have been fabricated via sequential filtration of bovine serum albumin (BSA) solution at pH 3.8 and 7.0 through the nanochannels of anodic aluminum oxide templates. The morphology of the nanostructures has been examined using scanning electron microscopy and transmission electron microscopy. Circular dichroism and UV/Vis spectroscopy have been used to select experimental conditions such as the pH values and the etching solution to release the fabricated protein nanotubes to minimize potential damage to the bioactivity of BSA. These results indicate that much more study needs to be done to strengthen the mechanical stability of the protein nanotubes and to better control their morphology.  相似文献   

8.
Phase transitions in the bulk and at grain boundaries in the (Al-20 wt % Zn) alloy have been studied by means of differential scanning calorimetry and transmission electron microscopy. Polycrystals with a high specific area of grain boundaries have been obtained using severe plastic deformation (high-pressure torsion). It has been shown that the Zn-based solid phase completely wets the grain boundaries in aluminum at a temperature of 200°C. The position of the grain boundary solvus line (solubility line), which is above the bulk solvus by 40?C45 K, has been determined.  相似文献   

9.
The kinetics of the extinction spectrum of a thin island silver film heated in the temperature range 473–553 K is studied experimentally. The observed variations in the inhomogeneously broadened extinction spectrum are related to two types of changes in the morphology of islands, namely, (i) coalescence and fragmentation of the islands at the initial stage and (ii) subsequent rounding of individual islands. This conclusion is supported by the data of electron microscopy of the film at different stages of its heating. The long duration of the relaxation process is explained by specific features of mass transfer over the surfaces of granulated nanoparticles.  相似文献   

10.
Morphology and atomic composition of anisotropically etched surfaces of InP have been studied by Auger electron spectroscopy (AES) and scanning electron microscopy (SEM). The photoelectric properties and the voltage-capacitance characteristics of the InP-electrolyte interface have been investigated. A correlation between these properties and the surface morphology and atomic composition was shown. The highest photosensitivity was found for flat stoichiometric surfaces with an optimal transition layer between the oxide and the semiconductor and a low content of In in its oxide.  相似文献   

11.
Mild steel was coated by hot-dipping into a molten aluminum bath. The microstructure and phase evolution in the aluminide layer during diffusion at 750 °C in static air were analyzed by electron backscatter diffraction (EBSD). The results showed that the aluminide layer of the as-coated specimen consisted of an outer aluminum topcoat, minor FeAl3 and major Fe2Al5, respectively. Also, Fe2Al5 possessed a tongue-like morphology, which caused corresponding serration-like morphology in the steel substrate. A portion of the peaks of serration-like substrate were isolated, after short exposure at 750 °C, and accompanied by the formation of voids, which continued to appear with further exposure at 750 °C. As the aluminum topcoat was consumed, FeAl3 phase disappeared and left an aluminide layer of Fe2Al5 phase. After 60 min of exposure, FeAl2 and FeAl phases formed at the interface between Fe2Al5 and the steel substrate. With increasing exposure time, the voids condensed and the serration-like morphology disappeared, while FeAl2 and FeAl phases kept growing. After prolonged exposure, the aluminide layer was composed of FeAl2 and FeAl and possessed a flat interface between FeAl and steel substrate.  相似文献   

12.
The lap welding of JSC270CC steel and A6111-T4 aluminum alloys were carried out by a dual-beam YAG laser with the continuous wave (CW) and pulse wave (PW) modes. The microstructure of the welded joints were examined with SEM, EPMA while the properties were checked with microhardness tester and tensile testing machine. It was shown that the dual-beam laser welding can effectively reduce or avoid the formation of the blowholes in the welded joints. The PW laser beam penetrated the welding pool, leading to the root-shape structures with enhanced bonding strength at the weld interface. A 10 μm intermetallic compound (IMC) layer was generated at the interface. The shearing strength of lap joint was measured to be 128 MPa.  相似文献   

13.
Films of Fe (20 nm) and Sn (40 nm) have been deposited by PVD onto Al supports and irradiated with 100 keV Xe ions at a dose of 5×1015 ions/cm2. Scanning electron microscopy (SEM) shows that the irregular morphology of deposited Sn is considerably flattened by irradiation, which produces also a noticeable sputtering of Sn. Conversion electron Mössbauer spectroscopy (CEMS) reveals the formation at the interface of a variety of intermetallic phases which is enhanced by irradiation. These phases, seem to be insensible to prolonged (several months) room temperature aging. Their thermal stability under annealing at temperature up to 523 K has also been investigated.  相似文献   

14.
The effect of temperature, pressure and bonding time on microstructure of temperature gradient transient liquid phase (TGTLP) diffusion bonded Al7075 alloy using liquid gallium interlayer was investigated. The selected bonding method relies on using the minimum amount of liquid gallium on faying surfaces, using a very fast heating rate to reach the joining temperature and imposing a temperature gradient across the bond region. The microstructure of the diffusion bonded joints was evaluated by light optical microscopy, scanning electron microscopy and energy dispersive spectroscopy (EDS). Results show that by increasing the temperature, pressure and time of joining, a more uniform microstructure can be obtained at the joint area. The best joint microstructure was achieved at a temperature of 460?°C, pressure of 10?MPa and time of 10?min. EDS spot analysis indicates that brittle silicon-rich precipitates form at the joint line during TGTLP bonding.  相似文献   

15.
Many aerospace components operate at elevated temperature. Such components are more vulnerable to impact and radiation environments than if cold. To evaluate the effects of these environments, an experimental program was undertaken in which four candidate missile structural materials were tested at various temperatures. The materials studied were 2024 aluminum alloy, 304 stainless steel, Haynes 25 cobalt alloy, and AZ-31B magnesium. A carbon foil radiative heater was used to provide initial temperatures up to 1300°K. The heated test specimens were then exposed to a high energy (~3 MeV) electron beam with a deposition time of 50nsec in the Boeing FX-75 facility. The results of these tests provided spall thresholds as a function of internal energy (temperature) for the various materials. Impact tests in the Boeing gas gun were also conducted to provide data on spall behavior at room temperature.  相似文献   

16.
AuBe/p-GaP接触体系界面特性随温度变化的研究   总被引:1,自引:1,他引:0  
林秀华 《发光学报》1998,19(2):99-104
微合金条件对M-S接触的表面与界面特性产生重要的影响.借助光电子能谱分析了AuBe/p-GaP接触体系界面组分变化,用扫描电子显微镜观察其表面形貌;从冶金学观点解析了M-S接触界面反应的特征,并对其温度依赖关系进行了讨论.  相似文献   

17.
In this work results of experiments on the in situ production of titanium nitride by the reaction of titania sol–gel with a nitrogenous admixture under laser irradiation are reported. A diode laser beam at different powers and traverse speeds was applied to the mixture placed on EN43 mild steel and 316L stainless steel substrates. Composite coatings of titanium nitride and titanium oxide with a hardness of 17–21 GPa have been achieved by this new method. Surface morphology and microstructure of the deposited coatings and substrate surface layers were examined using optical microscopy, scanning electron microscopy, and field-emission gun scanning electron microscopy. Chemical composition was determined by energy-dispersive X-ray analysis. The phases were identified by X-ray diffraction. Results of microhardness and nanohardness at the top surface were evaluated. PACS 81.15.Fg; 81.20.Fw; 81.05.-t  相似文献   

18.
Pulse-echo NDT of adhesively bonded joints in automotive assemblies   总被引:1,自引:0,他引:1  
Titov SA  Maev RG  Bogachenkov AN 《Ultrasonics》2008,48(6-7):537-546
A new method for the detection of void-disbonds at the interfaces of adhesively bonded joins is considered. Based on a simple plane wave model, the output waveform is presented as a sum of two responses associated with the reflection of the ultrasonic wave at the first metal-adhesive interface and the second metal-adhesive interface, respectively. The strong response produced by the wave reverberating in the first metal sheet is eliminated through comparison between the pulse-echo signal measured at the area under the test and reference waveform recorded for the bare first metal sheet outside of the joint. The developed decomposition algorithm has been applied to the study of steel and aluminum samples having various adhesive layer thicknesses in a range of 0.1-1mm.  相似文献   

19.
(GaN/GaAlN/GaN)//Al2O3(00.1) HEMT heterostructures have been studied by X-ray scattering techniques, transmission electron microscopy and atomic force microscopy. X-ray reflectometry has been used to determine with a high accuracy both the individual layer thicknesses and the interfacial roughness, in spite of the weak electronic density contrast between layers. From the Fourier inversion method and using a simulation software, the roughness of the interface corresponding to the two-dimensional electron gas location has been determined equal to 0.5 nm. Both high resolution X-ray diffraction and transmission electron microscopy experiments have shown the excellent crystallinity of the heterostructures. Finally, the surface morphology has been inferred using atomic force microscopy experiments.  相似文献   

20.
苑博  税国双  汪越胜 《物理学报》2018,67(7):74302-074302
材料损伤以及性能退化与超声波的非线性效应密切相关.为研究循环温度疲劳作用下粘接界面的损伤情况,本文采用超声波透射法,研究了6061型铝合金/改性丙烯酸酯胶粘接界面的声学非线性系数随高温、低温循环次数的变化情况.结果表明,在高温循环疲劳作用的初始阶段,试件的非线性系数变化不明显,但随着高温循环次数的不断增加,非线性系数随循环次数的变化十分明显;对于低温循环疲劳作用的初始阶段,试件的非线性系数迅速增大,随着循环次数的增加,其值增速减缓.在低温循环疲劳寿命的后期,试件的非线性系数随循环次数的增加而继续增大.进一步的讨论结果表明,胶层三阶弹性常数的变化是造成高温循环疲劳时非线性系数变化的主要原因,而对于低温循环疲劳,粘接界面拉伸刚度的变化是引起非线性系数变化的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号