首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对4种不同头型的钝体、以不同初始速度在小倾斜角度和垂直状态下入水,所产生的空泡流进行了的实验观察,分析了不同工况下空泡产生和发展的特性。实验结果表明:对于倾斜入水及垂直入水,圆台头和平头(即空化器均为圆盘)实验体均能形成较稳定的入水弹道;初始入水速度较低时,空泡的闭合方式为深闭合;初始入水速度较高时,空泡的闭合方式为表面闭合,且运动速度衰减得更快。测量得知,钝体倾斜入水产生的空泡的前部外形轮廓与Logvinovich的半经验公式给出的结果相吻合。在垂直入水的情况下,调查了物体头部对空泡的起始点位置及其形态的影响。  相似文献   

2.
伴随超空泡产生的高速细长体入水实验研究   总被引:6,自引:0,他引:6  
介绍了几种不同工况下高速细长体入水过程的实验研究工作. 用高速摄影仪实时记录了细长体高速入水时与自由液面之间的瞬态相互冲击作用, 清晰地观察了细长体高速入水后诱导生成的水中空泡流的形态及其演化过程. 具体分析了几种工况下高速细长体入水瞬间自由面的波动特性和细长体入水后运动的不稳定性. 从实时记录的照片中,测量出相邻2帧图片之间的细长体的位移差之后, 计算出细长体在入水过程中以及在水中的瞬时速度. 通过分析物体速度的变化趋势, 了解了超空泡流动的复杂过程.   相似文献   

3.
舒畅  宫兆新  刘桦 《力学季刊》2023,44(1):15-30
认识带尾喷流和自然超空泡的水下高速航行体流体动力特性并发展其预报与控制方法仍是水动力学领域极具挑战性的课题.本研究采用CFD方法对尾喷流和自然超空泡之间的相互作用进行了数值研究.针对发动机欠膨胀超音速喷流,采用现有实验结果验证了基于两方程湍流模型的二维轴对称流动数值模型的可靠性.尾喷流在空气和蒸汽环境中流动的数值计算结果表明,由于蒸汽环境中背压较低,欠膨胀尾喷流无法及时形成压缩波,使得蒸汽环境中尾喷流的过膨胀区和气相扩散区的体积比空气中大;尾喷流很难形成规则的激波格栅,波系结构相对简单.针对携尾喷流的平头航行体超空泡流状态的数值模拟结果表明,尾喷流注入超空泡后迅速充满航行体周围的空腔区域;尾喷流与超空泡尾迹区域形成的回射流相互作用最终导致超空泡断裂,断裂过程中伴随着燃气泡的下泄现象;受空泡壁面约束,尾喷流难以在狭窄的超空泡空腔内完全膨胀,尾喷流的激波波系结构有显著的变化:在喷嘴附近受到压缩,在远离喷嘴区域受到超空泡水汽掺混的破坏;空泡内压强基本维持在饱和蒸汽压附近,没有显著增加.  相似文献   

4.
A physical mechanism is proposed to explain an experimentally observed critical time scale that governs the partial cavity development over blunt free flying cylindrical projectiles. The projectiles were ejected using a modified gas-gun mechanism consisting of a barrel and explosive charge. Upon ignition, high-pressure gases forced a projectile down the launch barrel and into quiescent water. Results indicate that initial small cavities created at the projectile forebody are convected downstream where they subsequently grow towards the forebody, partially enveloping the projectile in a vapor cavity. The time at which the initially stable bubbles rapidly expand signifies that the partial cavity development process has begun. When this time is quantified and is non-dimensionalized appropriately, a time-scale for the critical growth (CGTS) for the cavitation is revealed. A plausible explanation of the partial cavity development process observed in these experiments is that the process is due to the interaction between small cavitation bubbles shed from the projectile forebody and the vortex ring generated by the impulsively started projectile. This interaction mediates the destabilization and spontaneous growth of small unstable bubbles resulting in the formation of partial cavitation over the projectile. An additional supercavitation formation mechanism was observed and is attributed to the launch mechanism. This process is not due to pure hydrodynamic cavitation, but rather an effect we term “gas-leakage” whereby the driving gases contaminated the aft flow field near the projectile and thus facilitated supercavitation to occur on a reduced time scale. This mechanism is equivalent to off-body ventilated supercavitation.  相似文献   

5.
平头物体三维带空泡入水的数值模拟   总被引:6,自引:1,他引:6  
陈学农  何友声 《力学学报》1990,22(2):129-138
本文用时间步进法和边界积分方程方法数值求解平头物体的垂直及斜向入水过程,这是一个在非线性自由面条件下,物体与流体有耦合作用,三维、非定常、理想不可压流体的运动问题,自由面用Lagrangian参数描述,物面用固结在物体上的Eulerian坐标描述,数值计算上提出了物面动力学条件(流-固耦合运动方程)和自由面动力学条件的二阶精度的时间差分隐格式,最后给出若干入水情况的详细计算结果。  相似文献   

6.
An approach is developed to the investigation of the shock interaction between a long thin cylindrical body and a cylindrical cavity in an infinite compressible perfect liquid. This process accompanies the supercavitation of the body. Three typical cases of cross-sectional dimensions of the body and the cavity are examined. For each case, a mixed nonstationary boundary-value problem with an unknown moving boundary is formulated. The unknown quantities are expanded into Fourier series. An auxiliary problem is solved using the Laplace transform to establish the relationship between the pressure and the velocity on the cavity surface. As a result, the problem is reduced to an infinite system of Volterra equations of the second kind solved simultaneously with the equation of transverse motion and the equation of the contact boundary. An asymptotic solution valid at the initial stage of interaction is obtained for all the three cases, and a numerical solution is found for the most typical case __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 6, pp. 32–53, June 2006.  相似文献   

7.
R.C. Mehta 《Shock Waves》2002,11(6):431-440
The pressure oscillations over a forward facing spike attached to an axisymmetric blunt body are simulated by solving time-dependent compressible Navier–Stokes equations. The governing fluid flow equations are discretized in spatial coordinates employing a finite volume approach which reduces the equations to semidiscretized ordinary differential equations. Temporal integration is performed using the two-stage Runge–Kutta time stepping scheme. A global time step is used to obtain a time-accurate numerical solution. The numerical computation is carried out for a freestream Mach number of 6.80 and for spike length to hemispherical diameter ratios of 0.5, 1.0 and 2.0. The flow features around the spiked blunt body are characterized by a conical shock wave emanating from the spike tip, a region of separated flow in front of the hemispherical cap, and the resulting reattachment shock wave. Comparisons of the numerical results are made with the available experimental results, such as schlieren pictures and the surface pressure distribution along the spiked blunt body. They are found to be in good agreement. Spectral analysis of the computed pressure oscillations are performed employing fast Fourier transforms. The surface pressure oscillations over the spike and phase plots exhibit a behaviour analogous to that of the Van der Pol equation for a self-sustained oscillatory flow. Received 28 February 2001 / Accepted 17 January 2002  相似文献   

8.
Reduction of Peak Heat Fluxes by Supplying Heat to the Free Stream   总被引:2,自引:0,他引:2  
A supersonic flow past a blunt body in the presence of an incident oblique shock wave is considered. It is shown that by supplying heat to the free stream it is possible substantially to reduce local heat flux peaks on the body surface. The integral heat flux on the body surface increases by only a small fraction of the heat released into the flow.  相似文献   

9.
A tracking method is presented for the modeling of partial and supercavitation. The velocity and pressure fields in the cavitating flow are computed by a Navier–Stokes solver using a pseudo-compressibility method. The cavity flow is computed from the velocity field by a tracking method based on a volume of fluid technique (VOF). The method is illustrated by several computations, two cases of partial cavitation on a hydrofoil and a case of a cavitating body emerging at a free surface.  相似文献   

10.
用高速摄像拍摄了90°锥头弹丸低速入水的空泡形态演变过程,全面讨论了不同入水冲击速度下空泡的闭合方式及其演变过程,分析了空泡闭合时间、闭合点水深和弹头空泡长度随入水速度的变化规律以及不同水深位置空泡直径的变化规律;研究了水幕闭合和近液面空泡收缩上升所形成的射流现象及其相互耦合作用过程,探讨了空泡深闭合后其壁面波动规律。结果表明:随着入水速度的增加,空泡分别发生准静态闭合、浅闭合、深闭合和表面闭合,每种闭合方式对应的一个速度区间;弹头产生空泡的临界入水速度为0.657 m/s;不同水深位置的空泡直径呈现非线性变化;随着水深的增加空泡扩张初速增大,空泡最大直径减小,扩张段缩短,收缩段延长;同一时刻水深越大空泡扩张收缩的加速度也越高;水幕闭合后会产生向上和向下两股射流,向下射流速度较大时会对弹丸运动产生影响;近液面空泡收缩上升时会产生强度正比于空泡体积大小和闭合点水深的射流,并与上两股射流相互耦合形成一股更强的向上射流;空泡深闭合后长度缩短和产生的向下射流使弹丸受力发生改变,弹丸速度因受力产生的变化带动了流体质点速度的波动,进而导致空泡壁面发生波动,壁面波动遵循空泡截面独立扩张原理。  相似文献   

11.
本文根据非线性自由面理论,用E-L方法计算了圆平头物体垂直入水空泡发生、发展、面闭合、拉离和深闭合等一系列连续变化过程。空泡中气体流动分为三个阶段加以处理。采用Riabouchinsky映象板模型,初步解决了高F_r数下数值模拟空泡深闭合的困难。计算结果表明,对于给定的物体头型,F_r数、空气出度数、物体质量数是影响入水空泡发展过程的主要因素。  相似文献   

12.
A study was made of conditions at the front of a strong shock wave taking account of the absorption of leading radiation. Emphasis is laid on the role of the dimensionless parameters which arise under these circumstances, and an evaluation is made of the values of these parameters for a number of practically important cases involving the entry of blunt bodies into dense layers of the Earth's atmosphere. Calculations are carried out to determine the composition and the parameters of the flow of molecular nitrogen entering into the shock wave, and conclusions are drawn with respect to the general problem of hypersonic flow around a blunt body, taking radiation into account. In an investigation of the flow of a hypersonic stream of air around a blunt body, taking account of radiation, it is necessary to have some idea of how the radiation leaving the zone of the shock wave reacts with the oncoming flow of cold air. The importance of taking this reaction into account is indicated by the results of observation of the reentry of spacecraft into dense layers of the atmosphere [1], and by existing experimental data on strong shock waves [2]. This reaction is bound up with the fact that the absorption of intense short-wave radiation from the shock wave in cold air leads to photodissociation and photoionization of the molecules of air, i.e., to an actual increase in the enthalpy of the air. Some of the general questions of the structure of a very strong direct shock wave, taking account of the absorption of radiation leading the wave front, have been investigated in [3],Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 40–47, November–December, 1970.  相似文献   

13.
The case of supersonic flow over a blunt body when another gas is injected through the surface of the body in accordance with a given law is theoretically investigated. If molecular transport processes are neglected, the flow between the shock wave and the surface of the body should be regarded as two-layer, that is, as consisting of the flow in the shock layer between the shock wave and the contact surface and the flow in the layer of injected gas. A numerical solution of the problem is obtained near the front of the body and its accuracy is estimated. Approximate analytic solutions are obtained in the injected-gas layer: a constant-density solution and a solution of the boundary-layer type in the local similarity approximation. Near the flow axis the numerical and analytic solutions are fairly close, but at a distance from the axis the assumptions made reduce the accuracy of the approximate solutions. The flow in question can serve as a gas-dynamic model of a series of problems describing the radiant heating of blunt bodies in a hypersonic flow. In the presence of intense radiative heat transfer, vaporization is so great that the thickness of the vapor layer is comparable with the thickness of the shock layer. Moreover, the thermal shielding of various kinds of obstacles in channels through which a radiating plasma flows can be organized by means of the forced injection of a strong absorber. The formulation of a similar problem was reported in [1], but the results of the solution were not given. A two-layer model of the flow of an ideal gas over a blunt body was used in [2, 3] for the analysis of radiative heat transfer. In [2] the neighborhood of the stagnation point is considered. In [3] preliminary results relating to two-layer flow over blunt cones are presented. The solution is obtained by Maslen's approximate method.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 89–97, March–April, 1972.  相似文献   

14.
An aerospike attached to a blunt body significantly alters its flowfield and influences aerodynamic drag at high speeds. The dynamic pressure in the recirculation area is highly reduced and this leads to the decrease in the aerodynamic drag. Consequently, the geometry of the aerospike has to be simulated in order to obtain a large conical recirculation region in front of the blunt body to get beneficial drag reduction. Axisymmetric compressible Navier–Stokes equations are solved using a finite volume discretization in conjunction with a multistage Runge–Kutta time stepping scheme. The effect of the various types of aerospike configurations on the reduction of aerodynamic drag is evaluated numerically at a length to diameter ratio of 0.5, at Mach 6 and at a zero angle of incidence. The computed density contours are showing satisfactory agreement with the schlieren pictures. The calculated pressure distribution on the blunt body compares well with the measured pressure data on the blunt body. Flowfield features such as formation of shock waves, separation region and reattachment point are examined for the flat-disc spike and on the hemispherical disc spike attached to the blunt body. One of the critical heating areas is at the stagnation point of a blunt body, where the incoming hypersonic flow is brought to rest by a normal shock and adiabatic compression. Therefore, the problem of computing the heat transfer rate near the stagnation point needs a solution of the entire flowfield from the shock to the spike body. The shock distance ahead of the hemisphere and the flat-disc is compared with the analytical solution and a good agreement is found between them. The influence of the shock wave generated from the spike is used to analyze the pressure distribution, the coefficient of skin friction and the wall heat flux facing the spike surface to the flow direction.  相似文献   

15.
Characteristics of unsteady type IV shock/shock interaction   总被引:1,自引:0,他引:1  
Characteristics of the unsteady type IV shock/shock interaction of hypersonic blunt body flows are investigated by solving the Navier–Stokes equations with high-order numerical methods. The intrinsic relations of flow structures to shear, compression, and heating processes are studied and the physical mechanisms of the unsteady flow evolution are revealed. It is found that the instantaneous surface-heating peak is caused by the fluid in the “hot spot” generated by an oscillating and deforming jet bow shock (JBS) just ahead of the body surface. The features of local shock/boundary layer interaction and vortex/boundary layer interaction are clarified. Based on the analysis of flow evolution, it is identified that the upstream-propagating compression waves are associated with the interaction of the JBS and the shear layers formed by a supersonic impinging jet, and then the interaction of the freestream bow shocks and the compression waves results in entropy and vortical waves propagating to the body surface. Further, the feedback mechanism of the inherent unsteadiness of the flow field is revealed to be related to the impinging jet. A feedback model is proposed to reliably predict the dominant frequency of flow evolution. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to this complex flow.  相似文献   

16.
We study shock wave structures (SWS), consisting of shock waves and expansion waves between them, that occur in supersonic flow past nonuniform fan cascades when the velocity component normal to their front (“axial” component) is subsonic. The cascade nonuniformity is due to the scatter in the setting angles of identical blades, either sharp or blunt. A result of the uniformity is the generation of combined noise, whose frequencies are much smaller than the fundamental frequency of the uniform cascade, and slower nonlinear SWS attenuation. The accurate and fast “simple wave method” and “nonlinear acoustics approximation”, together with numerical algorithms for integrating Euler equations on overlapping grids (in calculating flow past blunt edges) and on SWS-adapted grids, are applied to determine the “guiding” action of nonuniform cascades and to describe the SWS evolution. The application of the Fourier analysis gives the sound field spectrum. The use of blades with rectilinear initial regions of the “backs” for reducing supersonic fan blade noise is efficient only at small (less than 0.25°) scatter in the setting angles. The shock wave structures attenuate more rapidly ahead of nonuniform cascades composed of blunt blades than ahead of those with sharp blades. For uniform cascades the blade bluntness effect is not large.  相似文献   

17.
Three-dimensional dissociating air flow past blunt bodies is investigated within the framework of the parabolized Navier-Stokes equations in the thin layer approximation. Multicomponent diffusion, barodiffusion and homogeneous chemical reactions, including dissociation-recombination and exchange reactions, are taken into account. The boundary conditions are assigned in the free stream and at the surface of the body with allowance for heterogeneous catalytic reactions and slip effects. The problem of flow at zero angle of attack past blunt bodies possessing two planes of symmetry is investigated numerically for flow patterns varying from smeared layer structure to almost ideal flow (Re=50-105). The flow conditions corresponded to the motion of a body with lift along a re-entry trajectory [1]. The contribution of the chemical reactions in the shock wave as compared to the diffusion flux at the edge of the shock wave was estimated. The edge of the shock wave is assumed to correspond to the point at which the density profile has the greatest slope. The influence of slip effects and barodiffusion on the flow characteristics is demonstrated. The results of the calculations are compared with calculations based on the thin viscous shock layer model [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 143–150, September–October, 1987.The author wishes to express his thanks to G. A. Tirskii and V. V. Lunev for useful discussions and valuable advice.  相似文献   

18.
A method is proposed for measuring the detachment distance of the forward shock wave from the surface of a free-flying blunt body. The effect of excitation of vibrational degrees of freedom of the gas on the position of the detached shock wave is investigated for air and carbon dioxide.  相似文献   

19.
Hypersonic MHD air flow past a blunt body in the presence of an external magnetic field is considered. The MHD effect on the flow consists in a significant increase in the shock wave stand-off from the body surface and a significant reduction in the heat flux to the wall (up to 50%). It is shown that even in the presence of a strong Hall effect the intensity of the magnetohydrodynamic interaction in the plasma behind the shock wave remains at a high level commensurable with the ideal case of the absence of a Hall effect.  相似文献   

20.
An analytic solution is obtained in the work in a Newtonian approximation [1] for the flow-past problem for a plane blunt body by a steady-state uniform hypersonic inviscous space-radiating gas flow. The hypersonic flow-past problem for axisymmetrical blunt bodies by a nonviscous space-radiating gas has been previously considered [2–4]. In this case a satisfactory solution of the problem was obtained even in a zero-th approximation by decomposing the unknown values in terms of a parameter equal to the ratio of gas densities before and after passage of the shock wave. The solution of the problem in a zero-th approximation with respect to in the case of flow-past of plane blunt bodies does not turn out to be satisfactory, since the departure of the shock and the radiant flux to the body as gas flows into the shock layer turns out to be strongly overstated under nearly adiabatic conditions. Freeman [5] demonstrated that results may be significantly improved for flow-past of a plane blunt body by a nonradiating gas if a more precise expression is used for the tangential velocity component expressed in a new approximation with respect to the parameter . This refinement is applied in this work for solving the flow-past problem for a plane blunt body by a space-radiating gas. The distribution of the gasdynamic parameters in the shock layer, the departure of the shock wave, and the radiant heat flux to the surface of the body are found. The solution obtained is analyzed in detail for the example of flow-past regarding a circular cylinder.Translated from Zhurnal Prikladnoi Mekhanikii Tekhnicheskoi Fiziki, No. 3, 68–73, May–June, 1975.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号