首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pedagogical, semi-rigorous proof is presented for the existence of the thermodynamic (infinite-volume) limit of the energy per volume for an electrically neutral, metallic or nonmetallic crystal. The proof is based on the demonstration of the same for individual energy components, namely, the kinetic, Coulomb, and exchange contributions to the Hartree-Fock energy as well as the correlation contribution obtained by many-body perturbation or coupled-cluster theory.  相似文献   

2.
From coupled-cluster theory and many-body perturbation theory we derive the local exchange-correlation potential of density functional theory in an orbital dependent form. We show the relationship between the coupled-cluster approach and density functional theory, and connections and comparisons with our previous second-order correlation potential [OEP-MBPT(2) (OEP-optimized effective potential)] [I. Grabowski, S. Hirata, S. Ivanov, and R. J. Bartlett, J. Chem. Phys. 116, 4415 (2002)]. Starting from a general theoretical framework based on the density condition in Kohn-Sham theory, we define a rigorous exchange-correlation functional, potential and orbitals. Specifying initially to second-order terms, we show that our ab initio correlation potential provides the correct shape compared to those from reference quantum Monte Carlo calculations, and we demonstrate the superiority of using Fock matrix elements or more general infinite-order semicanonical transformations. This enables us to introduce a method that is guaranteed to converge to the right answer in the correlation and basis set limit, just as does ab initio wave function theory. We also demonstrate that the energies obtained from this generalized second-order method [OEP-MBPT2-f] and [OEP-MBPT2-sc] are often of coupled-cluster accuracy and substantially better than ordinary Hartree-Fock based second-order MBPT=MP2.  相似文献   

3.
The extrapolation method for determining benchmark quality full configuration-interaction energies described in preceding paper [L. Bytautas and K. Ruedenberg, J. Chem. Phys. 121, 10905 (2004)] is applied to the molecules H(2)O and N(2). As in the neon atom case, discussed in preceding paper [L. Bytautas and K. Ruedenberg, J. Chem. Phys. 121, 10905 (2004)] remarkably accurate scaling relations are found to exist between the correlation energy contributions from various excitation levels of the configuration-interaction approach, considered as functions of the size of the correlating orbital space. The method for extrapolating a sequence of smaller configuration-interaction calculations to the full configuration-interaction energy and for constructing compact accurate configuration-interaction wave functions is also found to be effective for these molecules. The results are compared with accurate ab initio methods, such as many-body perturbation theory, coupled-cluster theory, as well as with variational calculations wherever possible.  相似文献   

4.
We report in this paper the results of outer and inner valence IP calculations for the HF molecule using two different many-body methods for the direct evaluation of energy differences. The first is the nonperturbative coupled-cluster based linear response theory (LRT) and the second is the hermitian open-shell many-body perturbation theory (MBPT). A Huzinaga-Dunning (9s5p→ 5s3p/3s) basis has been used. LRT uses an “ionization operator” S as in the equation of motion method (EOM) to generate the ionized states from a coupled-cluster type of ground state. S is chosen to consist of single ionization and ionization-cum-shake-up operators, thus treating the Koopmans as well as the shake-up states on equal footing. LRT would thus be capable of computing both the outer and the inner valence regions with equal facility. This is borne out by the results. For the open-shell MBPT, the model space is chosen to be spanned by the singly ionized determinants. The convergence of the results for the inner valence region is slow, and the results obtained from the [2, 1] Pade' approximants are presented. Unlike the LRT, the inner valence region is not reproduced with full complexity in MBPT, indicating that it is essential to modify the theory by way of expanding the model space to contain the shake-up determinants also.  相似文献   

5.
We propose to account for the large basis-set error of a conventional coupled-cluster energy and wave function by a simple perturbative correction. The perturbation expansion is constructed by L?wdin partitioning of the similarity-transformed Hamiltonian in a space that includes explicitly correlated basis functions. To test this idea, we investigate the second-order explicitly correlated correction to the coupled-cluster singles and doubles (CCSD) energy, denoted here as the CCSD(2)(R12) method. The proposed perturbation expansion presents a systematic and easy-to-interpret picture of the "interference" between the basis-set and correlation hierarchies in the many-body electronic-structure theory. The leading-order term in the energy correction is the amplitude-independent R12 correction from the standard second-order M?ller-Plesset R12 method. The cluster amplitudes appear in the higher-order terms and their effect is to decrease the basis-set correction, in accordance with the usual experience. In addition to the use of the standard R12 technology which simplifies all matrix elements to at most two-electron integrals, we propose several optional approximations to select only the most important terms in the energy correction. For a limited test set, the valence CCSD energies computed with the approximate method, termed , are on average precise to (1.9, 1.4, 0.5 and 0.1%) when computed with Dunning's aug-cc-pVXZ basis sets [X = (D, T, Q, 5)] accompanied by a single Slater-type correlation factor. This precision is a roughly an order of magnitude improvement over the standard CCSD method, whose respective average basis-set errors are (28.2, 10.6, 4.4 and 2.1%). Performance of the method is almost identical to that of the more complex iterative counterpart, CCSD(R12). The proposed approach to explicitly correlated coupled-cluster methods is technically appealing since no modification of the coupled-cluster equations is necessary and the standard M?ller-Plesset R12 machinery can be reused.  相似文献   

6.
Analytic second derivatives of energy for general coupled-cluster (CC) and configuration-interaction (CI) methods have been implemented using string-based many-body algorithms. Wave functions truncated at an arbitrary excitation level are considered. The presented method is applied to the calculation of CC and CI harmonic frequencies and nuclear magnetic resonance chemical shifts up to the full CI level for some selected systems. The present benchmarks underline the importance of higher excitations in high-accuracy calculations.  相似文献   

7.
We report the first harmonic vibrational spectra for each of the lowest lying isomers within the four major families of minima of (H2O)20, namely, the dodecahedron, fused cubes, face-sharing pentagonal prisms, and edge-sharing pentagonal prisms. These were obtained at the second-order Moller-Plesset perturbation level of theory (MP2) with the augmented correlation consistent basis set of double zeta quality (aug-cc-pVDZ) at the corresponding minimum energy geometries. The computed infrared (IR) spectra are the first ones obtained from first principles for these clusters. They were found to contain spectral features, which can be directly mapped onto the distinctive spectroscopic signatures of their constituent tetramer, pentamer, and octamer fragments. The dodecahedron spectra show the richest structure in the OH stretching region and are associated with the most redshifted OH vibrations with respect to the monomer. The lowest lying edge-sharing pentagonal prism isomer displays intense IR active vibrations that are redshifted by approximately 600 cm(-1) with respect to the water monomer. Furthermore the most redshifted, IR-active OH stretching vibrations for all four networks correspond to hydrogen bonded OH groups, which exhibit the following two common characteristics: (i) they belong to fragments which have a "free" OH stretch and (ii) they act as donors to a neighboring water molecule along a "dimerlike" (strong) hydrogen bond. The zero-point energy corrected MP2/CBS (complete basis set) limit binding energies D(0) for the four isomers are -163.1 kcal/mol (edge-sharing pentagonal prism), -160.1 kcal/mol (face-sharing pentagonal prism), -157.5 kcal/mol (fused cubes), and -148.1 kcal/mol (dodecahedron).  相似文献   

8.
High-order correlation contributions to the second-order induction energy were studied for various representative van der Waals complexes. It was found that the induction energy obtained by the truncation of the relaxed M?ller-Plesset expansion in the second or third order is in most cases quite close to the induction energy computed with the coupled-cluster method (restricted to single and double excitations). Also, the effect of triples excitations on this perturbation term is usually small. However, given an oscillatory behaviour of the M?ller-Plesset induction corrections, the coupled-cluster method seems to be better suited to a reliable calculation of the induction energy. The sources of the remaining differences between the interaction energies computed by symmetry-adapted perturbation theory and those computed by the supermolecule coupled-cluster method (restricted to single, double, and noniterative triple excitations) are examined. It has been found that they can be attributed to the higher-order correlation terms in the second-order dispersion and exchange-induction corrections.  相似文献   

9.
The accurate ground-state potential energy function of the beryllium dimer, Be(2), has been determined from large-scale ab initio calculations using the single-reference coupled-cluster approach in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. Results obtained with the conventional and explicitly-correlated coupled-cluster methods were compared. The scalar relativistic and adiabatic (the diagonal correction) effects were also discussed. The vibration-rotation energy levels of Be(2) were predicted and found to be as accurate as those determined from the empirical potential energy function [J. M. Merritt et al., Science, 2009, 324, 1548]. The potential energy function of Be(2) was determined in this study to have a minimum at 2.444 ? and the well depth of 935 cm(-1).  相似文献   

10.
A valence-type anion of the canonical tautomer of uracil has been characterized using explicitly correlated second-order Moller-Plesset perturbation theory (RI-MP2-R12) in conjunction with conventional coupled-cluster theory with single, double, and perturbative triple excitations. At this level of electron-correlation treatment and after inclusion of a zero-point vibrational energy correction, determined in the harmonic approximation at the RI-MP2 level of theory, the valence anion is adiabatically stable with respect to the neutral molecule by 40 meV. The anion is characterized by a vertical detachment energy of 0.60 eV. To obtain accurate estimates of the vertical and adiabatic electron binding energies, a scheme was applied in which electronic energy contributions from various levels of theory were added, each of them extrapolated to the corresponding basis-set limit. The MP2 basis-set limits were also evaluated using an explicitly correlated approach, and the results of these calculations are in agreement with the extrapolated values. A remarkable feature of the valence anionic state is that the adiabatic electron binding energy is positive but smaller than the adiabatic electron binding energy of the dipole-bound state.  相似文献   

11.
This work reports the development and testing of an automated algorithm for estimating the energies of weakly bound molecular clusters employing correlated theory. Firstly, the monomers and dimers of (homo/hetero) clusters are identified, and the sum of one-body and two-body contributions to correlation energy is calculated. The addition of this contribution to the Hartree-Fock full calculation (FC) energies provides a good estimate of the total energies at Møller–Plesset second-order perturbation theory (MP2)/coupled-cluster method with singles and doubles (CCSD) (T)-level theory using augmented Dunning basis sets. The estimated energies for several test clusters show an excellent agreement with their FC counterparts, with a substantial wall-clock time saving employing off-the-shelf hardware. Furthermore, the complete basis set (CBS) limit for MP2 energy computed using the two-body approach also agrees with its CBS energy with its FC counterpart.  相似文献   

12.
We report estimates of complete basis set (CBS) limits at the second-order M?ller-Plesset perturbation level of theory (MP2) for the binding energies of the lowest-lying isomers within each of the four major families of minima of (H(2)O)(20). These were obtained by performing MP2 calculations with the family of correlation-consistent basis sets up to quadruple zeta quality, augmented with additional diffuse functions (aug-cc-pVnZ, n=D, T, Q). The MP2/CPS estimates are -200.1 (dodecahedron, 30 hydrogen bonds), -212.6 (fused cubes, 36 hydrogen bonds), -215.0 (face-sharing pentagonal prisms, 35 hydrogen bonds), and -217.9 kcal/mol (edge-sharing pentagonal prisms, 34 hydrogen bonds). The energetic ordering of the various (H(2)O)(20) isomers does not follow monotonically the number of hydrogen bonds as in the case of smaller clusters such as the different isomers of the water hexamer. The dodecahedron lies ca. 18 kcal/mol higher in energy than the most stable edge-sharing pentagonal prism isomer. The TIP4P, ASP-W4, TTM2-R, AMOEBA, and TTM2-F empirical potentials also predict the energetic stabilization of the edge-sharing pentagonal prisms with respect to the dodecahedron, albeit they universally underestimate the cluster binding energies with respect to the MP2/CBS result. Among them, the TTM2-F potential was found to predict the absolute cluster binding energies to within <1% from the corresponding MP2/CBS values, whereas the error for the rest of the potentials considered in this study ranges from 3% to 5%.  相似文献   

13.
A review is given of many-body perturbation methods, particularly in the all-order and coupled-cluster forms. Relativistic many-body schemes are analyzed in terms of one- and two-photon potentials, derived by means of QED. A complete second-order (nonradiative) calculation for He-like ions is presented, including repeated Breit interactions as well as the effects of retardation and of negative-energy states, but omitting the Lamb shift. Numerical results of some Lamb-shift calculations are also given. From the analysis, conclusions can be drawn concerning the accuracy of certain relativistic many-body approaches. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The method of moments of coupled-cluster equations (MMCC), which provides a systematic way of improving the results of the standard coupled-cluster (CC) and equation-of-motion CC (EOMCC) calculations for the ground- and excited-state energies of atomic and molecular systems, is described. The MMCC theory and its generalized MMCC (GMMCC) extension that enables one to use the cluster operators resulting from the standard as well as nonstandard CC calculations, including those obtained with the extended CC (ECC) approaches, are based on rigorous mathematical relationships that define the many-body structure of the differences between the full configuration interaction (CI) and CC or EOMCC energies. These relationships can be used to design the noniterative corrections to the CC/EOMCC energies that work for chemical bond breaking and potential energy surfaces of excited electronic states, including excited states dominated by double excitations, where the standard single-reference CC/EOMCC methods fail. Several MMCC and GMMCC approximations are discussed, including the renormalized and completely renormalized CC/EOMCC methods for closed- and open-shell states, the quadratic MMCC approaches, the CI-corrected MMCC methods, and the GMMCC approaches for multiple bond breaking based on the ECC cluster amplitudes.  相似文献   

15.
Vertical electron detachment energies (VDEs) are calculated for a variety of (H(2)O)(n)(-) and (HF)(n)(-) isomers, using different electronic structure methodologies but focusing in particular on a comparison between second-order M?ller-Plesset perturbation theory (MP2) and coupled-cluster theory with noniterative triples, CCSD(T). For the surface-bound electrons that characterize small (H(2)O)(n)(-) clusters (n< or = 7), the correlation energy associated with the unpaired electron grows linearly as a function of the VDE but is unrelated to the number of monomers, n. In every example considered here, including strongly-bound "cavity" isomers of (H(2)O)(24)(-), the correlation energy associated with the unpaired electron is significantly smaller than that associated with typical valence electrons. As a result, the error in the MP2 detachment energy, as a fraction of the CCSD(T) value, approaches a limit of about -7% for (H(2)O)(n)(-) clusters with VDEs larger than about 0.4 eV. CCSD(T) detachment energies are bounded from below by MP2 values and from above by VDEs calculated using second-order many-body perturbation theory with molecular orbitals obtained from density functional theory. For a variety of both strongly- and weakly-bound isomers of (H(2)O)(20)(-) and (H(2)O)(24)(-), including both surface states and cavity states, these bounds afford typical error bars of +/-0.1 eV. We have found only one case where the Hartree-Fock and density functional orbitals differ qualitatively; in this case the aforementioned bounds lie 0.4 eV apart, and second-order perturbation theory may not be reliable.  相似文献   

16.
The technique of Fock space multireference coupled-cluster (FSMRCC) is applied for the first time to the correlated calculation of the energy and width of a shape resonance in an electron-molecule collision. The procedure is based upon combining a complex absorbing potential with FSMRCC theory. Accurate resonance parameters are obtained by solving a small non-Hermitian eigenvalue problem. The potential-energy curve of the (2)Pi(g) state of N2- is calculated using the FSMRCC and multireference configuration-interaction (MRCI) level of theories. Comparison with the single-determinant Hartree-Fock theory indicates that correlation effects are important in determining the behavior of the resonance state.  相似文献   

17.
The CH4 + HO2(*) reaction is studied by using explicitly correlated coupled-cluster theory with singles and doubles (CCSD-R12) in a large 19s14p8d6f4g3h basis (9s6p4d3f for H) to approach the basis-set limit at the coupled-cluster singles-doubles level. A correction for connected triple excitations is obtained from the conventional CCSD(T) coupled-cluster approach in the correlation-consistent quintuple-zeta basis (cc-pV5Z). The highly accurate results for the methane reaction are used to calibrate the calculations of the hydroperoxyl-radical hydrogen abstraction from other alkanes. For the alkanes C(n)H(2n+2) with n = 2 --> 4, the reactions are investigated at the CCSD(T) level in the correlation-consistent triple-zeta (cc-pVTZ) basis. The results are adjusted to the benchmark methane reaction and compared with those from other approaches that are commonly used in the field such as CBS-QB3, CBS-APNO, and density functional theory. Rate constants are computed in the framework of transition state theory, and the results are compared with previous values available.  相似文献   

18.
The primary characteristics of single reference coupled-cluster (CC) theory are size-extensivity and size-consistency, invariance under orbital rotations of the occupied or virtual space, the exactness of CC theory for N electron systems when the cluster operator is truncated to N-tuple excitations, and the relative insensitivity of CC theory to the choice of the reference determinant. In this work, we propose a continuous class of methods which display the desirable features of the coupled-cluster approach with single and double excitations (CCSD). These methods are closely related to the CCSD method itself and are inspired by the coupled electron pair approximation (CEPA). It is demonstrated that one can systematically improve upon CCSD and obtain geometries, harmonic vibrational frequencies, and total energies from a parameterized version of CCSD or pCCSD(α,β) by selecting a specific member from this continuous family of approaches. In particular, one finds that one such approach, the pCCSD(-1,1) method, is a significant improvement over CCSD for the calculation of equilibrium structures and harmonic frequencies. Moreover, this method behaves surprisingly well in the calculation of potential energy surfaces for single bond dissociation. It appears that this methodology has significant promise for chemical applications and may be particularly useful in applications to larger molecules within the framework of a high accuracy local correlation approach.  相似文献   

19.
We report an analytical scheme for the calculation of first-order electrical properties using the spin-free Dirac-Coulomb (SFDC) Hamiltonian, thereby exploiting the well-developed density-matrix formulations in nonrelativistic coupled-cluster (CC) derivative theory. Orbital relaxation effects are fully accounted for by including the relaxation of the correlated orbitals with respect to orbitals of all types, viz., frozen-core, occupied, virtual, and negative energy state orbitals. To demonstrate the applicability of the presented scheme, we report benchmark calculations for first-order electrical properties of the hydrogen halides, HX with X = F, Cl, Br, I, At, and a first application to the iodo(fluoro)methanes, CH(n)F(3 - n)I, n = 0-3. The results obtained from the SFDC calculations are compared to those from nonrelativistic calculations, those obtained via leading-order direct perturbation theory as well as those from full Dirac-Coulomb calculations. It is shown that the full inclusion of spin-free (SF) relativistic effects is necessary to obtain accurate first-order electrical properties in the presence of fifth-row elements. The SFDC scheme is also recommended for applications to systems containing lighter elements because it introduces no extra cost in the rate-determining steps of a CC calculation in comparison to the nonrelativistic case. On the other hand, spin-orbit contributions are generally small for first-order electrical properties of closed-shell molecules and may be handled efficiently by means of perturbation theory.  相似文献   

20.
Explicitly correlated Gaussian functions have been used to perform very accurate variational calculations for the ground states of (7)Li and (7)Li(-). The nuclear motion has been explicitly included in the calculations (i.e., they have been done without assuming the Born-Oppenheimer (BO) approximation). An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed. This led to a noticeable improvement of the previously determined variational upper bound to the nonrelativistic energy of Li(-). The Li energy obtained in the calculations matches those of the most accurate results obtained with Hylleraas functions. The finite-mass (non-BO) wave functions were used to calculate the alpha(2) relativistic corrections (alpha=1c). With those corrections and the alpha(3) and alpha(4) corrections taken from Pachucki and Komasa [J. Chem. Phys. 125, 204304 (2006)], the electron affinity (EA) of (7)Li was determined. It agrees very well with the most recent experimental EA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号