首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optical response of an atomic vapor can be coherently manipulated by tunable quantum interference occurring in atomic transition processes. A periodic layered medium whose unit cells consist of a dielectric and an EIT (electromagnetically induced transparency) atomic vapor is designed for light propagation manipulation. Such an EIT‐based periodic layered medium exhibits a flexible frequency‐sensitive optical response, where a very small change in probe frequency can lead to a drastic variation of reflectance and transmittance. As the destructive quantum interference relevant to two‐photon resonance arises in EIT atoms interacting with both control and probe fields, the controllable optical processes that depend sensitively on the external control field will take place in this EIT‐based periodic layered medium. Such a frequency‐sensitive and field‐controlled optical behavior of reflection and transmission in the EIT photonic crystal can be applicable to designs of new devices such as photonic switches, photonic logic gates and photonic transistors, where one laser field can be controlled by the other one, and would have potential applications in the areas of integrated optical circuits and other related techniques (e.g., all‐optical instrumentations).  相似文献   

2.
Destructive and constructive quantum interferences exhibited in a four-level Y-configuration double-control atomic system are suggested. It is shown that the probe transition (driven by the probe field) can be manipulated by the quantum interferences between two control transitions (driven by the control fields) of the four-level system. The atomic vapor is opaque (or transparent) to the probe field if the destructive (or constructive) quantum interference between the control transitions emerges. The optically sensitive responses due to double-control quantum interferences can be utilized to realize some quantum optical and photonic devices such as the logic-gate devices, e.g., the NOT, OR, NOR and EXNOR gates.  相似文献   

3.
Multilevel quantum coherence and its quantum‐vacuum counterpart, where a three‐level dark state is involved, are suggested in order to achieve new photonic and quantum optical applications. It is shown that such a three‐level dark state in a four‐level tripod‐configuration atomic system consists of three lower levels, where constructive and destructive quantum interference between two control transitions (driven by two control fields) arises. We point out that the controllable optical response due to the double‐control tunable quantum interference can be utilized to design some fascinating new photonic devices such as logic gates, photonic transistors and switches at quantum level. A single‐photon two‐input XOR logic gate (in which the incident “gate” photons are the individual light quanta of the two control fields) based on such an effect of optical switching control with an EIT (electromagnetically induced transparency) microcavity is suggested as an illustrative example of the application of the dark‐state manipulation via the double‐control quantum interference. The present work would open up possibility of new applications in both fundamental physics (e.g., field quantization and relevant quantum optical effects in artificial systems that can mimic atomic energy levels) and applied physics (e.g., photonic devices such as integrated optical circuits at quantum level).  相似文献   

4.
We investigate the optical bistability (OB) and optical multi-stability (OM) in a four-level Y-type atomic system. It is found that the optical bistability can strongly be affected by intensity and frequency detuning of coupling and probe fields. The effect of spontaneously generated coherence on phase control of the OB and OM is then discussed. It has also been shown that the optical bistability can be switched to optical multi-stability just by the quantum interference mechanism and relative phase of applied fields.  相似文献   

5.
In a three-level asymmetric semiconductor quantum well system, owing to the effects that result from the incoherent pumping fields, the probe absorption of probe field can be effectively controlled. The result is achieved by applying the two incoherent pumping fields, so it is different from the conventional way in ordinary laser-driven schemes that coherent driving fields are necessary to control the probe absorption. Otherwise, our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength. Thus, it may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.  相似文献   

6.
A Λ-type three-level atomic system in the electromagnetically induced transparency (EIT) configuration interacting with a broadband squeezed vacuum (SV) bath is studied with quantum interference (QI) between decay channels taken into account. We formulate two sufficient critical conditions for the medium to be dispersionless or absorptionless. Computational results for the dispersion and absorption spectra show that presence of both QI and SV offers more avenues to manipulate the group velocity of probe pulse for its variation from sub-luminal to super-luminal regimes. The relative phase between the two external fields is found to act as a control knob of the atomic medium.  相似文献   

7.
We propose a four-level Λ scheme with a one-mode active Raman gain core and two-folded lower levels to obtain new linear and nonlinear optical responses. We show that this scheme is fundamentally different from that based on electromagnetically induced transparency (EIT). Firstly, it is gain-assisted and thus capable of eliminating all attenuation of probe field. Furthermore, due to the quantum interference effect introduced by a coupling field a gain doublet appears in gain spectrum, and hence the distortion of the probe field during propagation can be effectively avoided. In addition, in such system a large and rapidly responding Kerr nonlinearity can be produced, which is much (more than 10 times) larger than that obtained in the EIT-based scheme with the same energy-level configuration.  相似文献   

8.
Wei Yan  Xiaoming Li  Chunchao Yu 《哲学杂志》2013,93(19):2514-2526
We study the non-linear optical response in multiple quantum wells structure with a double-cascade type four-level configuration based on excitons and biexcitons transitions. By analysing the Kerr non-linear effects, we obtain the slow, mutually matched group velocities and giant Kerr non-linearity of probe and signal fields. While when the signal (or probe) field is removed, the non-linear optical phenomenon four-wave mixing (FWM) originating from quantum interference is demonstrated. The FWM efficiency of the system study is about 50%. Such a semiconductor system is much more practical than its atomic counterpart because of its flexible design and the controllable interference strength.  相似文献   

9.
Quantum control of stationary multi-color (MC) light fields in resonant medium with multi-Λ scheme of atomic transition is proposed. We have found the general analytical solution in the adiabatic limit of quantum evolution resulting from the interaction of the slow probe light with the new fields generated in the nondegenerate multi-wave mixing scheme. We have found a critical condition for the stopping and quantum manipulation of the MC-light fields where the united light group velocity can be reduced down to zero with optimal spectral parameters while preserving the delicate quantum correlations of the initial probe light pulse. The manipulations, which provide the effective transference of quantum probe light to the new multifrequency light fields have been analyzed. The text was submitted by the authors in English.  相似文献   

10.
We study the propagation of a quantum probe light in an ensemble of tripod level atoms when the atoms are coupled to two other classical control fields. First we calculate the dispersion properties, such as susceptibility and group velocity, of the probe light within such an atomic medium under the case of three-photon resonance via the dynamical algebra method of collective atomic excitations. Then we calculate the dispersion of the probe light in the case that two classical control fields have the different detunings to the relative atomic transitions. Our results show that in both cases the phenomenon of electromagnetically induced transparency can occur. Especially under the second case, we can find two transparency windows for the probe light.  相似文献   

11.
Mikhailov EE  Novikova I 《Optics letters》2008,33(11):1213-1215
We observed squeezed vacuum light at 795 nm in (87)Rb vapor via resonant polarization self-rotation and report noise sidebands suppression of approximately 1 dB below shot-noise level spanning from 30 kHz to 1.2 MHz frequencies. To our knowledge, this is the first demonstration of submegahertz quadrature vacuum squeezing in atomic systems. The spectral range of observed squeezing matches well typical bandwidths of electromagnetically induced transparency (EIT) resonances, making this simple technique for generation of optical fields with nonclassical statistics at atomic transitions wavelengths attractive for EIT-based quantum information protocols applications.  相似文献   

12.
We have proposed a scheme for double-beam optical bistability in a tunnel-coupled asymmetric double quantum-well driven by two optical fields circulating inside two independently unidirectional ring cavities. In contrast to the single-cavity case where single-photon saturated absorption and self Kerr-nonlinearity are dominant, the two-photon absorption and cross phase modulation can be enhanced via tunneling induced interference and have an important influence to the formation of bistability. The bistable behavior can be controlled effectively via the system parameters such as the input and detuning of control field, the detuning of the probe field, Fano interference strength and cooperation parameter. Furthermore, the proposed scheme has the ability to manipulate the outputs of two optical cavities simultaneously. Due to the flexible design of semiconductor quantum well, our scheme is more practical than atomic system, therefore it can be utilized to achieve dual all-optical switching which has application in optical communication and computing.  相似文献   

13.
14.
A composite system consisting of a K-type atomic medium and a double optical cavity configuration is considered to study the phenomenon of atomic optical bistability (AOB) in the mean field approximation. The controllability of this phenomenon achieved by additional electromagnetic fields not circulating in the cavities is studied. Also, the effect of spontaneously generated coherence due to the quantum interference in decaying nearby levels on the multi-branched AOB is discussed. The system displays a new class of bifurcations.  相似文献   

15.
LI Yong 《理论物理通讯》2006,46(1):135-140
We study the propagation of a quantum probe light in an ensemble of tripod level atoms when the atoms are coupled to two other classical control fields. First we calculate the dispersion properties, such as susceptibility and group velocity, of the probe light within such an atomic medium under the case of three-photon resonance via the dynamical algebra method of collective atomic excitations. Then we calculate the dispersion of the probe light in the case that two classical control fieMs have the different detunings to the relative atomic transitions. Our results show that in both cases the phenomenon of electromagnetically induced transparency can occur. Especially under the second case, we can find two transparency windows for the probe light.  相似文献   

16.
The optical multistability behaviour in a ring cavity for the V-type atomic system, driven by a coherent field and control field (coherent + dc fields), has been analysed. The presence of dc field is having a dominant effect on generating the optical multistability of the system. We show that, the effects of the quantum interference from spontaneous emission and of the relative phase between the two fields of the control field might be of use to control the threshold value and width of the hysteresis cycle, which can adjust the optical switching process when they are taken at optimal values. Also, the optical multistability is predicted for the output field as a function of the cooperative parameter in the presence of the quantum interference of the spontaneous emission.  相似文献   

17.
In this article an asymmetric intersubband quantum well structure as a high temperature terahertz (THz) optical switch is proposed. In our proposed structure the incoming low power energy photon (THz control signal) causes an optical switching. In this structure we introduce an optical terahertz switch based on coherent population trapping (CPT) phenomena. In the presence of electromagnetic THz field, quantum interference between the terahertz control field and short-wavelength probe field under appropriate condition, the medium becomes transparent (zero absorption) for the probe field. So the absorption and refraction characteristic of optical probe field can be modified with THz radiation. Therefore this idea is suitable for all – optical terahertz switching.  相似文献   

18.
It is well known that an optical trap can be imprinted by a light field in an ultracold-atom system embedded in an optical cavity,and driven by three different coherent fields.Of the three fields coexisting in the optical cavity there is an intense control field that induces a giant Kerr nonlinearity via electromagnetically-induced transparency,and another field that creates a periodic optical grating of strength proportional to the square of the associated Rabi frequency.In this work elliptic-soliton solutions to the nonlinear equation governing the propagation of the probe field are considered,with emphasis on the possible generation of optical soliton trains forming a discrete spectrum with well defined quantum numbers.The problem is treated assuming two distinct types of periodic optical gratings and taking into account the negative and positive signs of detunings(detuning above or below resonance).Results predict that the competition between the self-phase and cross-phase modulation nonlinearities gives rise to a rich family of temporal soliton train modes characterized by distinct quantum numbers.  相似文献   

19.
以相干诱导光子带隙结构为工作基础,提出了一种可对两个弱光信号的传播路径同时进行动态调控的新型全光路由控制方案。利用描述光波在空间周期介质中相干散射的传输矩阵理论,结合描述单频激光与多能级原子共振相互作用的密度矩阵方程,计算了作为控制媒介的相干驱动超冷原子系综的稳态反射光谱和稳态透射光谱。结果表明,通过改变两个较强相干激光的空间模式、强度和频率等参数,可在探测跃迁共振频率附近建立反射率约为95%或者透射率约为95%的两个特殊频带。对这样的相干诱导高反射带和高透射带进行了实时动态调控,可根据需要引导两个不同频率的弱光信号进入指定的网络通道。该方案很好地满足了在量子信息处理领域对弱光信号进行全光路由控制时的低损耗和低形变要求。  相似文献   

20.
The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration Ga As/Al Ga As semiconductor quantum dot are analytically studied with the phonon-assisted transition(PAT). It is shown that the changes among a single electromagnetically induced transparency(EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT κ. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号