首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Various optimization criteria are compared for the hydrogen atom to find orbitals which improve lower bounds computed from the Weinstein, Temple, and Stevenson-Crawford formulas. Minimization of squared energy deviation, “variance,” is recommended because the resulting lower bound orbitals give excellent lower bounds, converge to the exact wave function, are relatively easy to optimize, and are insensitive to the estimated energy eigenvalue. New linear combinations of Gaussian orbitals which minimize the variance are presented for the 1s, 2s, 2p, 3s, 3p, and 3d orbitals. These orbitals are compared with previous linear combinations with regard to their expectation values and local properties.  相似文献   

2.
The convergence of the intrapair correlation energy for a localized internal orbital is investigated as the virtual subspace is enlarged. At variance with previous investigations of this kind, the virtual subspace is represented in atomic orbitals. This allows to define spatial relations between the orbitals involved. Typically, over 98% of the pair correlation energy is recovered by a small local basis set, consisting of the valence orbitals of the atoms with which the electron pair is associated. This opens the possibility of an efficient Cl procedure based on localized pairs.  相似文献   

3.
It is demonstrated that a set of local orthonormal Hartree-Fock (HF) molecular orbitals can be obtained for both the occupied and virtual orbital spaces by minimizing powers of the orbital variance using the trust-region algorithm. For a power exponent equal to one, the Boys localization function is obtained. For increasing power exponents, the penalty for delocalized orbitals is increased and smaller maximum orbital spreads are encountered. Calculations on superbenzene, C(60), and a fragment of the titin protein show that for a power exponent equal to one, delocalized outlier orbitals may be encountered. These disappear when the exponent is larger than one. For a small penalty, the occupied orbitals are more local than the virtual ones. When the penalty is increased, the locality of the occupied and virtual orbitals becomes similar. In fact, when increasing the cardinal number for Dunning's correlation consistent basis sets, it is seen that for larger penalties, the virtual orbitals become more local than the occupied ones. We also show that the local virtual HF orbitals are significantly more local than the redundant projected atomic orbitals, which often have been used to span the virtual orbital space in local correlated wave function calculations. Our local molecular orbitals thus appear to be a good candidate for local correlation methods.  相似文献   

4.
We present here an algorithm for computing stable, well-defined localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The algorithm is very fast, limited only by diagonalization of two matrices with dimension the size of the number of virtual orbitals. Furthermore, we require no more than quadratic (in the number of electrons) storage. The basic premise behind our algorithm is that one can decompose any given atomic-orbital (AO) vector space as a minimal basis space (which includes the occupied and valence virtual spaces) and a hard-virtual (HV) space (which includes everything else). The valence virtual space localizes easily with standard methods, while the hard-virtual space is constructed to be atom centered and automatically local. The orbitals presented here may be computed almost as quickly as projecting the AO basis onto the virtual space and are almost as local (according to orbital variance), while our orbitals are orthonormal (rather than redundant and nonorthogonal). We expect this algorithm to find use in local-correlation methods.  相似文献   

5.
6.
In this article a procedure for generating starting orbitals for generalized valence bond (GVB) calculations is presented. This is achieved by selecting orbitals which correspond to specific bonds or electron pairs. These orbitals can be identified from the localized molecular orbitals, for both occupied and virtual orbitals, which are obtained through a unitary transformation of the Hartree-Fock canonical molecular orbitals using the Boys's localization method. A scheme has also been implemented which achieves optimum convergence of the pairwise orbital optimization. An object-oriented GVB program is developed which automatically generates reliable initial GVB orbitals, leading to proper and fast convergence. © 1996 by John Wiley & Sons, Inc.  相似文献   

7.
Valence-bound calculations are reported for the ground state of NH3 in which nitrogen 3d orbitals are used in the hybrid orbitals. Inclusion of 3d orbitals raises the value for the inversion barrier above the experimental value. The contribution of the N+ structure is decreased when 3d orbitals are included.  相似文献   

8.
Weinhold's natural hybrid orbitals can be chosen as the molecular adapted atomic orbitals to build the canonical molecular orbitals of N2 molecules. The molecular Fock matrix expanded in the natural hybrid orbitals can reveal deeper insight of the electronic structure and reaction of the N2 molecule. For example, the magnitude of Fab can signify the bonding character of the paired electrons as well as the diradical character of the unpaired electrons for both σ‐ and π‐types. Discarding the concept of the overlap between non‐orthogonal atomic orbitals, the different orbitals for different spins in the unrestricted Hartree‐Fock wavefunction reveal that there are three pairs of opposite spin density flows between two atoms, which proceed until the bonding molecular orbitals form.  相似文献   

9.
Wasilewski  J.  Nowakowski  K.  Jankowski  K. 《Structural chemistry》2004,15(5):437-445
For states of many-electron systems disclosing various degrees of quasidegeneracy, we have carried out comparative studies of Kohn–Sham orbitals (KSO) generated for several xc-potentials, Brueckner orbitals (BO) represented by the Brueckner-coupled cluster orbitals, and Hartree–Fock (HF) orbitals by means of criteria directly related to the orbital structure which are based on relative distance indices for various pairs of equidimensional subspaces defined by the KSO and BO basis sets. We have found that both for weak and strong quasidegeneracy there are systems for which the KSO–BO distances are larger than the BO–HF ones. For strongly quasidegenerate states it is found that the distance indices are the largest for hybrid potentials, and that the subspaces spanned by KSOs are closer to those spanned by HF orbitals than by BOs. Hence, our results do not support the recently formulated expectations concerning the similarity of Brueckner orbitals and Kohn–Sham orbitals, including those corresponding to purely local exchange-correlation potentials.  相似文献   

10.
11.
Recent advances in orbital localization algorithms are used to minimize the Pipek–Mezey localization function for both occupied and virtual Hartree–Fock orbitals. Virtual Pipek–Mezey orbitals for large molecular systems have previously not been considered in the literature. For this work, the Pipek–Mezey (PM) localization function is implemented for both the Mulliken and a Löwdin population analysis. The results show that the standard PM localization function (using either Mulliken or Löwdin population analyses) may yield local occupied orbitals, although for some systems the occupied orbitals are only semilocal as compared to state‐of‐the‐art localized occupied orbitals. For the virtual orbitals, a Löwdin population analysis shows improvement in locality compared to a Mulliken population analysis, but for both Mulliken and Löwdin population analyses, the virtual orbitals are seen to be considerably less local compared to state‐of‐the‐art localized orbitals. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
An effective local potential (ELP) is a multiplicative operator whose deviation from a given nonlocal potential has the smallest variance evaluated with a prescribed single-determinant wave function. ELPs are useful in density functional theory as alternatives to optimized effective potentials (OEPs) because they do not require special treatment in finite basis set calculations as OEPs do. We generalize the idea of variance-minimizing potentials by introducing the concept of a self-consistent ELP (SCELP), a local potential whose deviation from its nonlocal counterpart has the smallest variance in terms of its own Kohn-Sham orbitals. A semi-analytical method for computing SCELPs is presented. The OEP, ELP, and SCELP techniques are applied to the exact-exchange-only Kohn-Sham problem and are found to produce similar results for many-electron atoms.  相似文献   

13.
This paper presents an efficient algorithm for energy gradients in valence bond self-consistent field (VBSCF) method with non-orthogonal orbitals. The frozen core approximation method is extended to the case of non-orthogonal orbitals. The expressions for the total energy and its gradients are presented by introducing auxiliary orbitals, where inactive orbitals are orthogonal, while active orbitals are non-orthogonal themselves but orthogonal to inactive orbitals. It is shown that our new algorithm has a low scaling of (N a + 1)m 4, where N a and m are the numbers of the active orbitals and basis functions, respectively, and is more efficient than the existing VBSCF algorithms.  相似文献   

14.
One electron orbitals are determined from the reduced hamiltonian by a simple one-step diagonalization. These reduced hamiltonian orbitals (RHO's) are uniquely determined and virtual orbitals obtained in this procedure are on a par with filled orbitals. These RHO's appear well suited for CI calculations. Minimum basis set calculations are presented for H2O and compared with similar SCF studies.  相似文献   

15.
The efficiency of modified virtual orbitals (MVO) of ionic type and of approximate orthogonalized natural orbitals (ONO) in the CI-SD calculations was studied for O3 and SO2 molecules and compared with the commonly used canonical virtual orbitals (CVOs). The systems studied represent a class of electron-rich molecules, in which the number of valence electron pairs exceeds substantially the number of formal chemical bonds. We found that the modified orbitals of the types studied appear to be less effective for these systems than in the similar calculations for the AHn type molecules. Physical reasons for this difference were discussed. The evolution of spatial properties of virtual orbitals within the modification process was analyzed. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
A non‐iterative algorithm for the localization of molecular orbitals (MOs) from complete active space self consistent field (CASSCF) and for single‐determinantal wave functions on predefined moieties is given. The localized fragment orbitals can be used to analyze chemical reactions between fragments and also the binding of fragments in the product molecule with a fragments‐in‐molecules approach by using a valence bond expansion of the CASSCF wave function. The algorithm is an example of the orthogonal Procrustes problem, which is a matrix optimization problem using the singular value decomposition. It is based on the similarity of the set of MOs for the moieties to the localized MOs of the molecule; the similarity is expressed by overlap matrices between the original fragment MOs and the localized MOs. For CASSCF wave functions, localization is done independently in the space of occupied orbitals and active orbitals, whereas, the space of virtual orbitals is mostly uninteresting. Localization of Hartree–Fock or Kohn–Sham density functional theory orbitals is not straightforward; rather, it needs careful consideration, because in this case some virtual orbitals are needed but the space of virtual orbitals depends on the basis sets used and causes considerable problems due to the diffuse character of most virtual orbitals. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
A common perception about molecular systems with a nonlocal electronic structure (as manifested by a nonlocal Hartree–Fock (HF) density matrix), such as conjugated π-systems, is that they can only be described in terms of nonlocal molecular orbitals. This view is mostly founded on chemical intuition, and further, this view is strengthened by traditional approaches for obtaining local occupied and virtual orbital spaces, such as the occupied Pipek–Mezey orbitals, and projected atomic orbitals. In this article, we discuss the limitations for localizability of HF orbitals in terms of restrictions posed by the delocalized character of the underlying density matrix for the molecular system and by the orthogonality constraint on the molecular orbitals. We show that the locality of the orbitals, in terms of nonvanishing charge distributions of orbitals centered far apart, is much more strongly affected by the orthogonality constraint than by the physical requirement that the occupied orbitals must represent the electron density. Thus, the freedom of carrying out unitary transformations among the orbitals provides the flexibility to obtain highly local occupied and virtual molecular orbitals, even for molecular systems with a nonlocal density matrix, provided that a proper localization function is used. As an additional consideration, we clear up the common misconception that projected atomic orbitals in general are more local than localized orthogonal virtual orbitals.  相似文献   

18.
Using the three‐level energy optimization procedure combined with a refined version of the least‐change strategy for the orbitals—where an explicit localization is performed at the valence basis level—it is shown how to more efficiently determine a set of local Hartree–Fock orbitals. Further, a core–valence separation of the least‐change occupied orbital space is introduced. Numerical results comparing valence basis localized orbitals and canonical molecular orbitals as starting guesses for the full basis localization are presented. The results show that the localization of the occupied orbitals may be performed at a small computational cost if valence basis localized orbitals are used as a starting guess. For the unoccupied space, about half the number of iterations are required if valence localized orbitals are used as a starting guess compared to a canonical set of unoccupied Hartree–Fock orbitals. Different local minima may be obtained when different starting guesses are used. However, the different minima all correspond to orbitals with approximately the same locality. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Electronic wavefunctions that describe molecules in the full optimized reaction space (FORS) are multiconfigurational wavefunctions which are invariant under non-singular linear transformations of the occupied molecular orbitals. They offer therefore a considerably wider scope for orbital interpretations than the single-configuration Hartree-Fock approximation. For example they can be analyzed in terms of natural MOs and in terms of localized MOs. The latter turn out to be remarkably atomic in character and a new localization procedure can be formulated which yields atom-adapted molecular orbitals. These have the character of minimal-basis-set AOs that are optimally adapted to the molecular environment and furnish an unambigious atomic population analysis. On the other hand, chemically adapted molecular orbitals can be defined by an appropriate compromise between natural orbitals and localized orbitals. The freedom to use, as configuration-generating molecular orbitals, atom-adapted FORS MOs as well as chemically adapted FORS MOs makes FORS wavefunctions particularly suitable for chemical interpretations. The ensuing analysis establishes the minimal basis set (in molecule-adapted form) as a theoretically sound concept for the understanding of accurate molecular wavefunctions. An illustrative example is discussed.  相似文献   

20.
The angular distribution parameter, β, was determined for the valence orbitals (IP ′ 21.2 eV) of CCl4, CHCl3, CH2Cl2, and CH3Cl in the 10–30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β in the photoelectron energy range of 2 to 10 eV for the non-bonding chlorine n(Cl) orbitals of these molecules was found to be similar for all n(Cl) orbitals investigated. The energy dependence of β for the σ orbitals in these molecules was similar to that observed previously for other σ orbitals. The experimental CCl4 results were compared with theoretical CCl4 results obtained using the Xα multiple scattering formalism. Theory predicts the existence of two strong shape resonances in each of the valence orbitals of CCl4. The overall agreement between experiment and theory is evaluated along with the experimental evidence concerning the verification of the predicted shape resonances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号