首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article concerns the location of satellite distribution centers (SDCs) to supply humanitarian aid to the affected people throughout a disaster area. In such situations, it is not possible for the relief teams to visit every single home. Instead, the people are required to go to a satellite distribution center in order to obtain survival goods, provided that these centers are not too far from their homes. The SDCs are usually within walking distance. However, these SDCs need to be supplied from a central depot, using a heterogeneous and capacitated fleet of vehicles. We model this situation as a generalization of the covering tour problem, introduce the idea of split delivery, and propose an efficient heuristic approach to solve it. Numerical experiments on randomly-generated data show that, first, only very small instances can be solved efficiently using the mathematical model and, second, our heuristic produces high-quality solutions and solves real-size instances in a reasonable computing time.  相似文献   

2.
We consider a type of covering problem in cellular networks. Given the locations of base stations, the problem amounts to determining cell coverage at minimum cost in terms of the power usage. Overlap between adjacent cells is required in order to support handover. The problem we consider is NP-hard. We present integer linear models and study the strengths of their continuous relaxations. Preprocessing is used to reduce problem size and tighten the models. Moreover, we design a tabu search algorithm for finding near-optimal solutions effectively and time-efficiently. We report computational results for both synthesized instances and networks originating from real planning scenarios. The results show that one of the integer models leads to tight bounds, and the tabu search algorithm generates high-quality solutions for large instances in short computing time.  相似文献   

3.
In this paper we propose a new heuristic algorithm to solve the unicost version of the well-known set covering problem. The method is based on the electromagnetism metaheuristic approach which, after generating a pool of solutions to create the initial population, applies a fixed number of local search and movement iterations based on the “electromagnetism” theory. In addition to some random aspects, used in the construction and local search phases, we also apply mutation in order to further escape from local optima.  相似文献   

4.
In this paper we analyze the procurement problem of a company that needs to purchase a number of products from a set of suppliers to satisfy demand. The suppliers offer total quantity discounts and the company aims at selecting a set of suppliers so to satisfy product demand at minimum purchasing cost. The problem, known as Total Quantity Discount Problem (TQDP), is strongly NP-hard. We study different families of valid inequalities and provide a branch-and-cut approach to solve the capacitated variant of the problem (Capacitated TQDP) where the quantity available for a product from a supplier is limited. A hybrid algorithm, called HELP (Heuristic Enhancement from LP), is used to provide an initial feasible solution to the exact approach. HELP exploits information provided by the continuous relaxation problem to construct neighborhoods optimally searched through the solution of mixed integer subproblems. A streamlined version of the proposed exact method can optimally solve in a reasonable amount of time instances with up to 100 suppliers and 500 products, and largely outperforms an existing approach available in the literature and CPLEX 12.2 that frequently runs out of memory before completing the search.  相似文献   

5.
Existing literature on routing of school buses has focused mainly on building intricate models that attempt to capture as many real-life constraints and objectives as possible. In contrast, the focus of this paper is on understanding the joint problem of bus route generation and bus stop selection – two important sub-problems – in its most basic form. To this end, this paper defines the school bus routing problem (SBRP) as a variant of the vehicle routing problem in which three simultaneous decisions have to be made: (1) determine the set of stops to visit, (2) determine for each student which stop (s)he should walk to, and (3) determine routes that lie along the chosen stops, so that the total traveled distance is minimized. An MIP model of this basic problem is developed.  相似文献   

6.
In this paper we define a weightedr-covering problem, and show that there exists an optimum solution of ther-covering problem which can be decomposed into the sum of a rounded down solution of its linear relaxation and an optimal solution of a weighted edge covering problem on a reduced graph. Vertexr-packing problem can also be reduced to ther-covering problem.  相似文献   

7.
In a recent paper, a new surrogate heuristic (SH) has been proposed for the set covering problem. Here we present an adaptation of it in order to solve more efficiently the location set covering problem. We will show that our new version not only outperforms algorithm SH but that it is more accurate than the pair CMA/FMC. Its power is experimentally tested over a set of 65 randomly generated problems.  相似文献   

8.
This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also proposed to improve the solution quality of the original version. The performance of the enhanced heuristic is evaluated on two sets of standard benchmark instances, and compared with the original artificial bee colony heuristic. The computational results show that the enhanced heuristic outperforms the original one, and can produce good solutions when compared with the existing heuristics. These results seem to indicate that the enhanced heuristic is an alternative to solve the capacitated vehicle routing problem.  相似文献   

9.
《Discrete Mathematics》2024,347(1):113665
Recently, in coding theory and cryptography, it has been important the diversified use of lattices. One use of them is to cover a space. Each lattice has a covering radius, a number corresponding to the radius of a ball whose translations by all the points of the lattice cover efficiently the space generated by a basis of it. A way to obtain lattices algebraically is from subgroups of the multiplicative group of units of a number field via the logarithm embedding. This includes the logarithm lattice. In this work, it is presented an upper bound on the covering radius of the logarithm lattice obtained from the units of general cyclotomic number fields via the logarithm embedding, which generalizes an upper bound present in a previous work for cyclotomic number fields of prime-power indices.  相似文献   

10.
The Vehicle Routing Problem with Backhauls (VRPB) is an extension of the VRP that deals with two types of customers: the consumers (linehaul) that request goods from the depot and the suppliers (backhaul) that send goods to the depot. In this paper, we propose a simple yet effective iterated local search algorithm for the VRPB. Its main component is an oscillating local search heuristic that has two main features. First, it explores a broad neighborhood structure at each iteration. This is efficiently done using a data structure that stores information about the set of neighboring solutions. Second, the heuristic performs constant transitions between feasible and infeasible portions of the solution space. These transitions are regulated by a dynamic adjustment of the penalty applied to infeasible solutions. An extensive statistical analysis was carried out in order to identify the most important components of the algorithm and to properly tune the values of their parameters. The results of the computational experiments carried out show that this algorithm is very competitive in comparison to the best metaheuristic algorithms for the VRPB. Additionally, new best solutions have been found for two instances in one of the benchmark sets. These results show that the performance of existing metaheuristic algorithms can be considerably improved by carrying out a thorough statistical analysis of their components. In particular, it shows that by expanding the exploration area and improving the efficiency of the local search heuristic, it is possible to develop simpler and faster metaheuristic algorithms without compromising the quality of the solutions obtained.  相似文献   

11.
We report a new optimal resolution for the statistical stratification problem under proportional sampling allocation among strata. Consider a finite population of N units, a random sample of n units selected from this population and a number L of strata. Thus, we have to define which units belong to each stratum so as to minimize the variance of a total estimator for one desired variable of interest in each stratum, and consequently reduce the overall variance for such quantity. In order to solve this problem, an optimal algorithm based on the concept of minimal path in a graph is proposed and assessed. Computational results using real data from IBGE (Brazilian Central Statistical Office) are provided.  相似文献   

12.
An exact algorithm for solving a capacitated location-routing problem   总被引:2,自引:0,他引:2  
In location-routing problems, the objective is to locate one or many depots within a set of sites (representing customer locations or cities) and to construct delivery routes from the selected depot or depots to the remaining sites at least system cost. The objective function is the sum of depot operating costs, vehicle acquisition costs and routing costs. This paper considers one such problem in which a weight is assigned to each site and where sites are to be visited by vehicles having a given capacity. The solution must be such that the sum of the weights of sites visited on any given route does not exceed the capacity of the visiting vehicle. The formulation of an integer linear program for this problem involves degree constraints, generalized subtour elimination constraints, and chain barring constraints. An exact algorithm, using initial relaxation of most of the problem constraints, is presented which is capable of solving problems with up to twenty sites within a reasonable number of iterations.  相似文献   

13.
This work focuses on an improved exact algorithm for addressing an NP-hard network pricing problem. The method involves an efficient and partial generation of candidate solutions, a recursive scheme for generating improved upper bounds, and a column generation procedure for solving the network-structured subproblems. Its efficiency is assessed against both randomly generated instances involving three distinct topologies as well as instances based on real life situations in telecommunication and freight transportation.  相似文献   

14.
15.
A problem of visiting megalopolises with a fixed number of “entrances” and precedence relations defined in a special way is studied. The problem is a natural generalization of the classical traveling salesman problem. For finding an optimal solution, we give a dynamic programming scheme, which is equivalent to a method of finding a shortest path in an appropriate acyclic oriented weighted graph. We justify conditions under which the complexity of the algorithm depends on the number of megalopolises polynomially, in particular, linearly.  相似文献   

16.
17.
We are concerned with a variation of the knapsack problem as well as of the knapsack sharing problem, where we are given a set of n items and a knapsack of a fixed capacity. As usual, each item is associated with its profit and weight, and the problem is to determine the subset of items to be packed into the knapsack. However, in the problem there are s players and the items are divided into s + 1 disjoint groups, Nk (k = 0, 1,  , s). The player k is concerned only with the items in N0  Nk, where N0 is the set of ‘common’ items, while Nk represents the set of his own items. The problem is to maximize the minimum of the profits of all the players. An algorithm is developed to solve this problem to optimality, and through a series of computational experiments, we evaluate the performance of the developed algorithm.  相似文献   

18.
This study proposes an efficient exact algorithm for the precedence-constrained single-machine scheduling problem to minimize total job completion cost where machine idle time is forbidden. The proposed algorithm is based on the SSDP (Successive Sublimation Dynamic Programming) method and is an extension of the authors’ previous algorithms for the problem without precedence constraints. In this method, a lower bound is computed by solving a Lagrangian relaxation of the original problem via dynamic programming and then it is improved successively by adding constraints to the relaxation until the gap between the lower and upper bounds vanishes. Numerical experiments will show that the algorithm can solve all instances with up to 50 jobs of the precedence-constrained total weighted tardiness and total weighted earliness–tardiness problems, and most instances with 100 jobs of the former problem.  相似文献   

19.
We formulate the fixed-charge multiple knapsack problem (FCMKP) as an extension of the multiple knapsack problem (MKP). The Lagrangian relaxation problem is easily solved, and together with a greedy heuristic we obtain a pair of upper and lower bounds quickly. We make use of these bounds in the pegging test to reduce the problem size. We also present a branch-and-bound (B&B) algorithm to solve FCMKP to optimality. This algorithm exploits the Lagrangian upper bound as well as the pegging result for pruning, and at each terminal subproblem solve MKP exactly by invoking MULKNAP code developed by Pisinger [Pisinger, D., 1999. An exact algorithm for large multiple knapsack problems. European Journal of Operational Research 114, 528–541]. As a result, we are able to solve almost all test problems with up to 32,000 items and 50 knapsacks within a few seconds on an ordinary computing environment, although the algorithm remains some weakness for small instances with relatively many knapsacks.  相似文献   

20.
We describe a new branch-and-bound algorithm for the exact solution of the maximum cardinality stable set problem. The bounding phase is based on a variation of the standard greedy algorithm for finding a colouring of a graph. Two different node-fixing heuristics are also described. Computational tests on random and structured graphs and very large graphs corresponding to real-life problems show that the algorithm is competitive with the fastest algorithms known so far.This work has been supported by Agenzia Spaziale Italiana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号