首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper introduces a new algorithm for solving mixed integer programs. The core of the method is an iterative technique for changing the representation of the original mixed integer optimization problem. Supported by grants FKZ 0037KD0099 and FKZ 2495A/0028G of the Kultusministerium of Sachsen-Anhalt.Supported by a Gerhard-Hess-Preis and grant WE 1462 of the Deutsche Forschungsgemeinschaft, and by the European DONET program TMR ERB FMRX-CT98-0202.Mathematics Subject Classification (1991):90C11  相似文献   

2.
A branch-and-bound algorithm to solve 0–1 parametric mixed integer linear programming problems has been developed. The present algorithm is an extension of the branch-and-bound algorithm for parametric analysis on pure integer programming. The characteristic of the present method is that optimal solutions for all values of the parameter can be obtained.  相似文献   

3.
We present cutting plane algorithms for the inverse mixed integer linear programming problem (InvMILP), which is to minimally perturb the objective function of a mixed integer linear program in order to make a given feasible solution optimal.  相似文献   

4.
The blocks relocation problem (BRP) may be defined as follows: given a set of homogeneous blocks stored in a two-dimensional stock, which relocations are necessary to retrieve the blocks from the stock in a predefined order while minimizing the number of those relocations? In this paper, we first prove NP-hardness of the BRP as well as a special case, closing open research questions. Moreover, we propose different solution approaches. First, a mathematical model is presented that provides optimal solutions to the general BRP in cases where instances are small. To overcome such limitation, some realistic assumption taken from the literature is introduced, leading to the definition of a binary linear programming model. In terms of computational time, this approach is reasonably fast to be used to solve medium-sized instances. In addition, we propose a simple heuristic based upon a set of relocation rules. This heuristic is used to generate “good” quality solutions for larger instances in very short computational time, and, consequently, is proposed for tackling problem instances where solutions are required (almost) immediately. Solution quality of the heuristic is measured against optimal solutions obtained using a state-of-the-art commercial solver and both of them are compared with reference results from literature.  相似文献   

5.
In this paper, a new local optimization method for mixed integer quadratic programming problems with box constraints is presented by using its necessary global optimality conditions. Then a new global optimization method by combining its sufficient global optimality conditions and an auxiliary function is proposed. Some numerical examples are also presented to show that the proposed optimization methods for mixed integer quadratic programming problems with box constraints are very efficient and stable.  相似文献   

6.
In this paper, we introduce a new variant of the Vehicle Routing Problem (VRP), namely the Two-Stage Vehicle Routing Problem with Arc Time Windows (TS_VRP_ATWs) which generally emerges from both military and civilian transportation. The TS_VRP_ATW is defined as finding the vehicle routes in such a way that each arc of the routes is available only during a predefined time interval with the objective of overall cost minimization. We propose a Mixed Integer Programming (MIP) formulation and a heuristic approach based on Memetic Algorithm (MA) to solve the TS_VRP_ATW. The qualities of both solution approaches are measured by using the test problems in the literature. Experimental results show that the proposed MIP formulation provides the optimal solutions for the test problems with 25 and 50 nodes, and some test problems with 100 nodes. Results also show that the proposed MA is promising quality solutions in a short computation time.  相似文献   

7.
This study considers the problem of health examination scheduling. Depending on their gender, age, and special requirements, health examinees select one of the health examination packages offered by a health examination center. The health examination center must schedule all the examinees, working to minimize examinee/doctor waiting time and respect time and resource constraints, while also taking other limitations, such as the sequence and continuity of the examination procedures, into consideration. The Binary integer programming (BIP) model is one popular way to solve this health examination scheduling problem. However, as the number of examinees and health examination procedures increase, solving BIP models becomes more and more difficult, if not impossible. This study proposes health examination scheduling algorithm (HESA), a heuristic algorithm designed to solve the health examination scheduling problem efficiently and effectively. HESA has two primary objectives: minimizing examinee waiting time and minimizing doctor waiting time. To minimize examinee waiting time, HESA schedules the various parts of each examinee’s checkup for times when the examinee is available, taking the sequence of the examination procedures and the availability of the resources required into account. To minimize doctor waiting time, HESA focuses on doctors instead of examinees, assigning waiting examinees to a doctor as soon as one becomes available. Both complexity analysis and computational analyses have shown that HESA is very efficient in solving the health examination scheduling problem. In addition to the theoretical results, the results of HESA’s application to the concrete health examination scheduling problems of two large hospitals in Taiwan are also reported.  相似文献   

8.
A ring star in a graph is a subgraph that can be decomposed into a cycle (or ring) and a set of edges with exactly one vertex in the cycle. In the minimum ring-star problem (mrsp) the cost of a ring star is given by the sum of the costs of its edges, which vary, depending on whether the edge is part of the ring or not. The goal is to find a ring-star spanning subgraph minimizing the sum of all ring and assignment costs. In this paper we show that the mrsp can be reduced to a minimum (constrained) Steiner arborescence problem on a layered graph. This reduction is used to introduce a new integer programming formulation for the mrsp. We prove that the dual bound generated by the linear relaxation of this formulation always dominates the one provided by an early model from the literature. Based on our new formulation, we developed a branch-and-cut algorithm for the mrsp. On the primal side, we devised a grasp heuristic to generate good upper bounds for the problem. Computational tests with these algorithms were conducted on a benchmark of public domain. In these experiments both our exact and heuristics algorithms had excellent performances, noticeably in dealing with instances whose optimal solution has few vertices in the ring. In addition, we also investigate the minimum spanning caterpillar problem (mscp) which has the same input as the mrsp and admits feasible solutions that can be viewed as ring stars with paths in the place of rings. We present an easy reduction of the mscp to the mrsp, which makes it possible to solve to optimality instances of the former problem too. Experiments carried out with the mscp revealed that our branch-and-cut algorithm is capable to solve to optimality instances with up to 200 vertices in reasonable time.  相似文献   

9.
天然气稳态运行优化问题的难点在于网络结构复杂、规模大、目标函数及约束高度非线性.针对其混合整数非线性规划模型,基于网络约简和线性化技术,建立了线性近似模型,并提出一种新的求解算法.将新算法用于优化我国西部天然气管网系统,结果表明所提算法是有效的.  相似文献   

10.
This paper addresses an Electric Vehicle Relocation Problem (E-VReP), in one-way carsharing systems, based on operators who use folding bicycles to facilitate vehicle relocation. In order to calculate the economic sustainability of this relocation approach, a revenue associated with each relocation request satisfied and a cost associated with each operator used are introduced. The new optimization objective maximizes the total profit. To overcome the drawback of the high CPU time required by the Mixed Integer Linear Programming formulation of the E-VReP, two heuristic algorithms, based on the general properties of the feasible solutions, are designed. Their effectiveness is tested on two sets of realistic instances. In the first, all the requests have the same revenue, while, in the second, the revenue of each request has a variable component related to the user’s rent-time and a fixed part related to customer satisfaction. Finally, a sensitivity analysis is carried out on both the number of requests and the fixed revenue component.  相似文献   

11.
The airline industry is under intense competition to simultaneously increase efficiency and satisfaction for passengers and profitability and internal system benefit for itself. The boarding process is one way to achieve these objectives as it tends itself to adaptive changes. In order to increase the flying time of a plane, commercial airlines try to minimize the boarding time, which is one of the most lengthy parts of a plane’s turn time. To reduce boarding time, it is thus necessary to minimize the number of interferences between passengers by controlling the order in which they get onto the plane through a boarding policy. Here, we determine the passenger boarding problem and examine the different kinds of passenger boarding strategies and boarding interferences in a single aisle aircraft. We offer a new integer linear programming approach to reduce the passenger boarding time. A genetic algorithm is used to solve this problem. Numerical results show effectiveness of the proposed algorithm.  相似文献   

12.
This is a summary of the main results presented in the author’s PhD thesis, supervised by D. Conforti and P. Beraldi and defended on March 2005. The thesis, written in English, is available from the author upon request. It describes one of the very few existing implementations of a method for solving stochastic mixed integer nonlinear programming problems based on deterministic global optimization. In order to face the computational challenge involved in the solution of such multi-scenario nonconvex problems, a branch and bound approach is proposed that exploits the peculiar structure of stochastic programming problem.  相似文献   

13.
A Mond–Weir type multiobjective variational mixed integer symmetric dual program over arbitrary cones is formulated. Applying the separability and generalized F-convexity on the functions involved, weak, strong and converse duality theorems are established. Self duality theorem is proved. A close relationship between these variational problems and static symmetric dual minimax mixed integer multiobjective programming problems is also presented.  相似文献   

14.
This paper presents a mixed-integer programming formulation to find optimal solutions for the block layout problem with unequal departmental areas arranged in flexible bays. The nonlinear department area constraints are modeled in a continuous plane without using any surrogate constraints. The formulation is extensively tested on problems from the literature.  相似文献   

15.
We attempt to motivate and survey recent research on the use of strong valid inequalities and reformulation to solve mixed integer programming problems.  相似文献   

16.
The linear ordering problem is an NP-hard combinatorial problem with a large number of applications. Contrary to another very popular problem from the same category, the traveling salesman problem, relatively little space in the literature has been devoted to the linear ordering problem so far. This is particularly true for the question of developing good heuristic algorithms solving this problem.In the paper we propose a new heuristic algorithm solving the linear ordering problem. In this algorithm we made use of the sorting through insertion pattern as well as of the operation of permutation reversal. The surprisingly positive effect of the reversal operation, justified in part theoretically and confirmed in computational examples, seems to be the result of a unique property of the problem, called in the paper the symmetry of the linear ordering problem. This property consists in the fact that if a given permutation is an optimal solution of the problem with the criterion function being maximized, then the reversed permutation is a solution of the problem with the same criterion function being minimized.  相似文献   

17.
In this comment, we preset a minor mistake in typing which is made in “A new local and global optimization method for mixed integer quadratic programming problems” by G.Q. Li et al.  相似文献   

18.
This paper presents a mixed integer programming (MIP) model which succeeds in a system integration of the production planning and shop floor scheduling problems. The proposed advanced planning and scheduling (APS) model explicitly considers capacity constraints, operation sequences, lead times and due dates in a multi-order environment. The objective of the model is to seek the minimum cost of both production idle time and tardiness or earliness penalty of an order. The output of the model is operation schedules with order starting time and finish time. Numerical result shows that the suggested APS model can favorably produce optimal schedules.  相似文献   

19.
This paper considers the maximum betweenness problem. A new mixed integer linear programming (MILP) formulation is presented and validity of this formulation is given. Experimental results are performed on randomly generated instances from the literature. The results of CPLEX solver, based on the proposed MILP formulation, are compared with results obtained by total enumeration technique. The results show that CPLEX optimally solves instances of up to 30 elements and 60 triples in a short period of time.  相似文献   

20.
The n-step mixed integer rounding (MIR) functions generate n-step MIR inequalities for MIP problems and are facets for the infinite group problems. We show that the n-step MIR functions also directly generate facets for the finite master cyclic group polyhedra especially in many cases where the breakpoints of the n-step MIR function are not necessarily at the elements of the group (hence the linear interpolation of the facet coefficients obtained has more than two slopes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号