首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
Using a relativistic transport model followed by a statistical sequential binary emission model, the population of metastable high-spin isomeric states are studied in relativistic projectile fragmentation reactions. The initial angular momentum distribution are generated from hole excitations. We find that the angular momentum distribution of the excited prefragments are considerably broadened due to light particle evaporation. The model reproduces the experimentally measured population of relatively low-lying states and underpredicts states with high angular momentum I?17?I?17?. We propose that coupling the spin of the excited and hole states in the prefragment will give a better understanding of the data.  相似文献   

4.
We explore the Euclidean-time tails of odd-parity nucleon correlation functions in a search for the SS-wave pion–nucleon scattering-state threshold contribution. The analysis is performed using 2+12+1 flavor 323×64323×64 PACS-CS gauge configurations available via the ILDG. Correlation matrices composed with various levels of fermion source/sink smearing are used to project low-lying states. The consideration of 25,600 fermion propagators reveals the presence of more than one state in what would normally be regarded as an eigenstate-projected correlation function. This observation is in accord with the scenario where the eigenstates contain a strong mixing of single and multi-particle states but only the single particle component has a strong coupling to the interpolating field. Employing a two-exponential fit to the eigenvector-projected correlation function, we are able to confirm the presence of two eigenstates. The lower-lying eigenstate is consistent with a NπNπ scattering threshold and has a relatively small coupling to the three-quark interpolating field. We discuss the impact of this small scattering-state contamination in the eigenvector projected correlation function on previous results presented in the literature.  相似文献   

5.
In this paper, based on the topological basis states, we investigate the Hamiltonian family {H2,H3,H4}{H2,H3,H4} of a closed four-qubit Haldane–Shastry spin chain. Not only the two-qubit interaction form, but also the three-qubit interaction form and the four-qubit interaction form are presented in terms of spin operators. Meanwhile, we explore some particular properties of the topological basis states in these systems. With Yangian algebra, the symmetry of the systems and the transitions between the eigenstates have been investigated. We find a really useful effect of Y(sl(2))Y(sl(2)) operators {J±,J3}{J±,J3}, which is that they can describe the transitions between the spin single state and the spin triple states. Furthermore, we construct a new Hamiltonian, whose energy degeneracies can be changed by adjusting the strengths of the two-qubit interactions, three-qubit interactions, four-qubit interactions, and the external magnetic field.  相似文献   

6.
7.
8.
9.
It has been noted that the Kitaev chain, a p-wave superconductor with nearest-neighbor pairing amplitude equal to the hopping term Δ=tΔ=t, and chemical potential μ=0μ=0, can be mapped into a nearest neighbor Ising model via a Jordan–Wigner transformation. Starting from the explicit eigenstates of the open Kitaev chain in terms of the original fermion operators, we elaborate that despite this formal equivalence the models are physically inequivalent, and show how the topological phase in the Kitaev chain maps into conventional order in the Ising model.  相似文献   

10.
11.
A new method to prepare photoions with the polarized nuclear spin is proposed. Selected total electron momentum state |J,mJ〉|J,mJ is excited by short (pico- or (sub)nanosecond) spectrally broad laser pulse which does not resolve a hyperfine structure thus preparing a superposition of all sublevels of the total angular momentum F   of an atom. Initially unpolarized nuclear spin state becomes highly polarized in a course of subsequent free quantum evolution, and at appropriate time an atom is ionized by another short laser pulse. For the case of nuclear spin I=1/2I=1/2, absorption of only one polarized photon is needed to achieve 100% nuclear polarization.  相似文献   

12.
Beisert et al. have identified an integrable SU(2,2)SU(2,2) quantum spin chain which gives the one-loop anomalous dimensions of certain operators in large NcNc QCD. We derive a set of nonlinear integral equations (NLIEs) for this model, and compute the scattering matrix of the various (in particular, magnon) excitations.  相似文献   

13.
We set up a strategy for studying large families of logarithmic conformal field theories by using the enlarged symmetries and non-semisimple associative algebras appearing in their lattice regularizations (as discussed in a companion paper [N. Read, H. Saleur, Enlarged symmetry algebras of spin chains, loop models, and S-matrices, cond-mat/0701259]). Here we work out in detail two examples of theories derived as the continuum limit of XXZ spin-1/2 chains, which are related to spin chains with supersymmetry algebras gl(n|n)gl(n|n) and gl(n+1|n)gl(n+1|n), respectively, with open (or free) boundary conditions in all cases. These theories can also be viewed as vertex models, or as loop models. Their continuum limits are boundary conformal field theories (CFTs) with central charge c=−2c=2 and c=0c=0 respectively, and in the loop interpretation they describe dense polymers and the boundaries of critical percolation clusters, respectively. We also discuss the case of dilute (critical) polymers as another boundary CFT with c=0c=0. Within the supersymmetric formulations, these boundary CFTs describe the fixed points of certain nonlinear sigma models that have a supercoset space as the target manifold, and of Landau–Ginzburg field theories. The submodule structures of indecomposable representations of the Virasoro algebra appearing in the boundary CFT, representing local fields, are derived from the lattice. A central result is the derivation of the fusion rules for these fields.  相似文献   

14.
The integrable XXZ alternating spin chain with generic non-diagonal boundary terms specified by the most general non-diagonal KK-matrices is studied via the off-diagonal Bethe Ansatz method. Based on the intrinsic properties of the fused RR-matrices and KK-matrices, we obtain certain closed operator identities and conditions, which allow us to construct an inhomogeneous T−QTQ relation and the associated Bethe Ansatz equations accounting for the eigenvalues of the transfer matrix.  相似文献   

15.
We study rigid string solutions rotating in AdS5×S5AdS5×S5 background. For particular values of the parameters of the solutions we find multispin solutions corresponding to giant magnons and single spike strings. We present an analysis of the dispersion relations in the case of three spin solutions distributed only in S5S5 and the case of one spin in AdS5AdS5 and two spins in S5S5. The possible relation of these string solutions to gauge theory operators and spin chains are briefly discussed.  相似文献   

16.
17.
We study the properties of the conformal blocks of the conformal field theories with Virasoro or W-extended symmetry. When the conformal blocks contain only second-order degenerate fields, the conformal blocks obey second order differential equations and they can be interpreted as ground-state wave functions of a trigonometric Calogero–Sutherland Hamiltonian with non-trivial braiding properties. A generalized duality property relates the two types of second order degenerate fields. By studying this duality we found that the excited states of the Calogero–Sutherland Hamiltonian are characterized by two partitions, or in the case of WAk1WAk1 theories by k   partitions. By extending the conformal field theories under consideration by a u(1)u(1) field, we find that we can put in correspondence the states in the Hilbert state of the extended CFT with the excited non-polynomial eigenstates of the Calogero–Sutherland Hamiltonian. When the action of the Calogero–Sutherland integrals of motion is translated on the Hilbert space, they become identical to the integrals of motion recently discovered by Alba, Fateev, Litvinov and Tarnopolsky in Liouville theory in the context of the AGT conjecture. Upon bosonization, these integrals of motion can be expressed as a sum of two, or in general k, bosonic Calogero–Sutherland Hamiltonian coupled by an interaction term with a triangular structure. For special values of the coupling constant, the conformal blocks can be expressed in terms of Jack polynomials with pairing properties, and they give electron wave functions for special Fractional Quantum Hall states.  相似文献   

18.
We investigate the consequences of one extra spatial dimension for the stability and energy spectrum of the non-relativistic hydrogen atom with a potential defined by Gauss’ law, i.e.    proportional to 1/|x|21/|x|2. The additional spatial dimension is considered to be either infinite or curled-up in a circle of radius RR. In both cases, the energy spectrum is bounded from below for charges smaller than the same critical value and unbounded from below otherwise. As a consequence of compactification, negative energy eigenstates appear: if RR is smaller than a quarter of the Bohr radius, the corresponding Hamiltonian possesses an infinite number of bound states with minimal energy extending at least to the ground state of the hydrogen atom.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号