首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the problem of finding the optimal routing of a single vehicle that delivers K different products to N customers according to a particular customer order. The demands of the customers for each product are assumed to be random variables with known distributions. Each product type is stored in its dedicated compartment in the vehicle. Using a suitable dynamic programming algorithm we find the policy that satisfies the demands of the customers with the minimum total expected cost. We also prove that this policy has a specific threshold-type structure. Furthermore, we investigate a corresponding infinite-time horizon problem in which the service of the customers does not stop when the last customer has been serviced but it continues indefinitely with the same customer order. It is assumed that the demands of the customers at different tours have the same distributions. It is shown that the discounted-cost optimal policy and the average-cost optimal policy have the same threshold-type structure as the optimal policy in the original problem. The theoretical results are illustrated by numerical examples.  相似文献   

2.
In the open vehicle routing problem (OVRP), the objective is to minimise the number of vehicles and then minimise the total distance (or time) travelled. Each route starts at the depot and ends at a customer, visiting a number of customers, each once, en route, without returning to the depot. The demand of each customer must be completely fulfilled by a single vehicle. The total demand serviced by each vehicle must not exceed vehicle capacity. Additionally, in one variant of the problem, the travel time of each vehicle should not exceed an upper limit.  相似文献   

3.
This paper presents an approximation algorithm for a vehicle routing problem on a tree-shaped network with a single depot where there are two types of demands, pickup demand and delivery demand. Customers are located on nodes of the tree, and each customer has a positive demand of pickup and/or delivery.Demands of customers are served by a fleet of identical vehicles with unit capacity. Each vehicle can serve pickup and delivery demands. It is assumed that the demand of a customer is splittable, i.e., it can be served by more than one vehicle. The problem we are concerned with in this paper asks to find a set of tours of the vehicles with minimum total lengths. In each tour, a vehicle begins at the depot with certain amount of goods for delivery, visits a subset of the customers in order to deliver and pick up goods and returns to the depot. At any time during the tour, a vehicle must always satisfy the capacity constraint, i.e., at any time the sum of goods to be delivered and that of goods that have been picked up is not allowed to exceed the vehicle capacity. We propose a 2-approximation algorithm for the problem.  相似文献   

4.
This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal route is defined as a route on which the vehicle first visits customers in increasing order of customer index, and on the remaining part of the route visits customers in decreasing order of customer index.  相似文献   

5.
This paper considers the vehicle routing problem with pickups and deliveries (VRPPD) where the same customer may require both a delivery and a pickup. This is the case, for instance, of breweries that deliver beer or mineral water bottles to a set of customers and collect empty bottles from the same customers. It is possible to relax the customary practice of performing a pickup when delivering at a customer, and postpone the pickup until the vehicle has sufficient free capacity. In the case of breweries, these solutions will often consist of routes in which bottles are first delivered until the vehicle is partly unloaded, then both pickup and delivery are performed at the remaining customers, and finally empty bottles are picked up from the first visited customers. These customers are revisited in reverse order, thus giving rise to lasso shaped solutions. Another possibility is to relax the traditional problem even more and allow customers to be visited twice either in two different routes or at different times on the same route, giving rise to a general solution. This article develops a tabu search algorithm capable of producing lasso solutions. A general solution can be reached by first duplicating each customer and generating a Hamiltonian solution on the extended set of customers. Test results show that while general solutions outperform other solution shapes in term of cost, their computation can be time consuming. The best lasso solution generated within a given time limit is generally better than the best general solution produced with the same computing effort.  相似文献   

6.
In this paper, we extend the multiple traveling repairman problem by considering a limitation on the total distance that a vehicle can travel; the resulting problem is called the multiple traveling repairmen problem with distance constraints (MTRPD). In the MTRPD, a fleet of identical vehicles is dispatched to serve a set of customers. Each vehicle that starts from and ends at the depot is not allowed to travel a distance longer than a predetermined limit and each customer must be visited exactly once. The objective is to minimize the total waiting time of all customers after the vehicles leave the depot. To optimally solve the MTRPD, we propose a new exact branch-and-price-and-cut algorithm, where the column generation pricing subproblem is a resource-constrained elementary shortest-path problem with cumulative costs. An ad hoc label-setting algorithm armed with bidirectional search strategy is developed to solve the pricing subproblem. Computational results show the effectiveness of the proposed method. The optimal solutions to 179 out of 180 test instances are reported in this paper. Our computational results serve as benchmarks for future researchers on the problem.  相似文献   

7.
Vehicle routing variants with multiple depots and mixed fleet present intricate combinatorial aspects related to sequencing choices, vehicle type choices, depot choices, and depots positioning. This paper introduces a dynamic programming methodology for efficiently evaluating compound neighborhoods combining sequence-based moves with an optimal choice of vehicle and depot, and an optimal determination of the first customer to be visited in the route, called rotation. The assignment choices, making the richness of the problem, are thus no more addressed in the solution structure, but implicitly determined during each move evaluation. Two meta-heuristics relying on these concepts, an iterated local search and a hybrid genetic algorithm, are presented. Extensive computational experiments demonstrate the remarkable performance of these methods on classic benchmark instances for multi-depot vehicle routing problems with and without fleet mix, as well as the notable contribution of the implicit depot choice and positioning methods to the search performance. New state-of-the-art results are obtained for multi-depot vehicle routing problems (MDVRP), and multi-depot vehicle fleet mix problems (MDVFMP) with unconstrained fleet size. The proposed concepts are fairly general, and widely applicable to many other vehicle routing variants.  相似文献   

8.
The classical vehicle routing problem involves designing a set of routes for a fleet of vehicles based at one central depot that is required to serve a number of geographically dispersed customers, while minimizing the total travel distance or the total distribution cost. Each route originates and terminates at the central depot and customers demands are known. In many practical distribution problems, besides a hard time window associated with each customer, defining a time interval in which the customer should be served, managers establish multiple objectives to be considered, like avoiding underutilization of labor and vehicle capacity, while meeting the preferences of customers regarding the time of the day in which they would like to be served (soft time windows). This work investigates the use of goal programming to model these problems. To solve the model, an enumeration-followed-by-optimization approach is proposed which first computes feasible routes and then selects the set of best ones. Computational results show that this approach is adequate for medium-sized delivery problems.  相似文献   

9.
We present a variable neighborhood search approach for solving the one-commodity pickup-and-delivery travelling salesman problem. It is characterized by a set of customers such that each of the customers either supplies (pickup customers) or demands (delivery customers) a given amount of a single product, and by a vehicle, whose given capacity must not be exceeded, that starts at the depot and must visit each customer only once. The objective is to minimize the total length of the tour. Thus, the considered problem includes checking the existence of a feasible travelling salesman’s tour and designing the optimal travelling salesman’s tour, which are both NP-hard problems. We adapt a collection of neighborhood structures, k-opt, double-bridge and insertion operators mainly used for solving the classical travelling salesman problem. A binary indexed tree data structure is used, which enables efficient feasibility checking and updating of solutions in these neighborhoods. Our extensive computational analysis shows that the proposed variable neighborhood search based heuristics outperforms the best-known algorithms in terms of both the solution quality and computational efforts. Moreover, we improve the best-known solutions of all benchmark instances from the literature (with 200 to 500 customers). We are also able to solve instances with up to 1000 customers.  相似文献   

10.
The purpose of this article is to propose a perturbation metaheuristic for the vehicle routing problem with private fleet and common carrier (VRPPC). This problem consists of serving all customers in such a way that (1) each customer is served exactly once either by a private fleet vehicle or by a common carrier vehicle, (2) all routes associated with the private fleet start and end at the depot, (3) each private fleet vehicle performs only one route, (4) the total demand of any route does not exceed the capacity of the vehicle assigned to it, and (5) the total cost is minimized. This article describes a new metaheuristic for the VRPPC, which uses a perturbation procedure in the construction and improvement phases and also performs exchanges between the sets of customers served by the private fleet and the common carrier. Extensive computational results show the superiority of the proposed metaheuristic over previous methods.  相似文献   

11.
We study the operations scheduling problem with delivery deadlines in a three-stage supply chain process consisting of (1) heterogeneous suppliers, (2) capacitated processing centres (PCs), and (3) a network of business customers. The suppliers make and ship semi-finished products to the PCs where products are finalized and packaged before they are shipped to customers. Each business customer has an order quantity to fulfil and a specified delivery date, and the customer network has a required service level so that if the total quantity delivered to the network falls below a given targeted fill rate, a non-linear penalty will apply. Since the PCs are capacitated and both shipping and production operations are non-instantaneous, not all the customer orders may be fulfilled on time. The optimization problem is therefore to select a subset of customers whose orders can be fulfilled on time and a subset of suppliers to ensure the supplies to minimize the total cost, which includes processing cost, shipping cost, cost of unfilled orders (if any), and a non-linear penalty if the target service level is not met. The general version of this problem is difficult because of its combinatorial nature. In this paper, we solve a special case of this problem when the number of PCs equals one, and develop a dynamic programming-based algorithm that identifies the optimal subset of customer orders to be fulfilled under each given utilization level of the PC capacity. We then construct a cost function of a recursive form, and prove that the resulting search algorithm always converges to the optimal solution within pseudo-polynomial time. Two numerical examples are presented to test the computational performance of the proposed algorithm.  相似文献   

12.
The Vehicle Routing Problem with Time Windows (VRPTW) is a combinatorial optimization problem. It deals with route planning and the distribution of goods from a depot to geographically dispersed customers by a fleet of vehicles with constrained capacities. The customers’ demands are known and each customer has a time window in which it has to be supplied. The time windows are assumed to be soft, that means, violations of the time windows are allowed, but associated with penalties. The problem is to organize the vehicle routes optimally, i.e. to minimize the total costs, consisting of the number of used vehicles and the total distance, and the penalties simultaneously. Thus, the problem is formulated as a bicriterion minimization problem and heuristic methods are used to calculate approximations of the Pareto optimal solutions. Experimental results show that in certain cases the allowance of penalties leads to significant savings of the total costs.  相似文献   

13.
In this paper we study the routing of a single vehicle that delivers products and picks up items with stochastic demand. The vehicle follows a predefined customer sequence and is allowed to return to the depot for loading/unloading as needed. A suitable dynamic programming algorithm is proposed to determine the minimum expected routing cost. Furthermore, the optimal routing policy to be followed by the vehicle’s driver is derived by proposing an appropriate theorem. The efficiency of the algorithm is studied by solving large problem sets.  相似文献   

14.
This paper addresses a generalization of the capacitated location-routing problem (CLRP) arising in the design of a collection network for a company engaged in collecting used products from customer zones. The company offers customers a financial incentive per unit of used products. This incentive determines the quantity of used products which are returned by customers. Moreover, it is not necessary for the company to visit all customer zones or to collect all returns in each visited customer zone. The objective is to simultaneously find the location of collection centers, the routes of vehicles, the value of incentive offered and the amount of used products collected from customer zones, so as to maximize the company's overall profit. We develop two mixed integer linear programming formulations of the problem and a heuristic algorithm based on iterated local search. Extensive computational experiments on this problem demonstrate the effectiveness of the proposed algorithm.  相似文献   

15.
This paper introduces a pickup and delivery problem encountered in servicing of offshore oil and gas platforms in the Norwegian Sea. A single vessel must perform pickups and deliveries at several offshore platforms. All delivery demands originate at a supply base and all pickup demands are also destined to the base. The vessel capacity may never be exceeded along its route. In addition, the amount of space available for loading and unloading operations is limited at each platform. The problem, called the Single Vehicle Pickup and Delivery Problem with Capacitated Customers consists of designing a least cost vehicle (vessel) route starting and ending at the depot (base), visiting each customer (platform), and such that there is always sufficient capacity in the vehicle and at the customer location to perform the pickup and delivery operations. This paper describes several construction heuristics as well as a tabu search algorithm. Computational results are presented.  相似文献   

16.
We present a mathematical formulation and a heuristic solution approach for the optimal planning of delivery routes in a multi-modal system combining truck and Unmanned Aerial Vehicle (UAV) operations. In this system, truck and UAV operations are synchronized, i.e., one or more UAVs travel on a truck, which serves as a mobile depot. Deliveries can be made by both UAVs and the truck. While the truck follows a multi-stop route, each UAV delivers a single shipment per dispatch. The presented optimization model minimizes the waiting time of customers in the system. The model determines the optimal allocation of customers to truck and UAVs, the optimal route sequence of the truck, and the optimal launch and reconvene locations of the UAVs along the truck route. We formulate the problem as a Mixed-Integer Linear Programming (MILP) model and conduct a bound analysis to gauge the maximum potential of the proposed system to reduce customer waiting time compared to a traditional truck-only delivery system. To be able to solve real-world problem size instances, we propose an efficient Truck and Drone Routing Algorithm (TDRA). The solution quality and computational performance of the mathematical model and the TDRA are compared together and with the truck-only model based on a variety of problem instances. Further, we apply the TDRA to a real-world case study for e-commerce delivery in São Paulo, Brazil. Our numerical results suggest significant reductions in customer waiting time to be gained from the proposed multi-modal delivery model.  相似文献   

17.
赵玲  刘志学 《运筹与管理》2022,31(6):105-110
为了吸引更多顾客,许多电子商务零售商允许顾客在一定时间内退货,导致其利润明显减少。同时,在补货时不仅产生依赖补货量的变动成本,而且会产生与补货量无关的固定成本。基于此,以最大化电子商务零售商的利润为目标,建立考虑顾客退货和固定成本的联合补货与定价模型,其中顾客的退货量与满足的需求呈正比。在一般需求情形下,部分刻画多期问题的最优策略;在特殊需求情形下,证明(s,S,p)策略对单期问题最优,并对多期问题的最优策略进行严格刻画。根据已有刻画为多期问题构造启发式策略。数值结果表明启发式策略近似最优;当初始库存水平足够高/低时,最优补货水平和定价随退货率与固定成本单调变化。关键词:联合补货与定价模型;顾客退货;固定成本;随机动态规划;最优策略  相似文献   

18.
In the vehicle routing problem (VRP), a fleet of vehicles must service the demands of customers in a least-cost way. In the split delivery vehicle routing problem (SDVRP), multiple vehicles can service the same customer by splitting the deliveries. By allowing split deliveries, savings in travel costs of up to 50 % are possible, and this bound is tight. Recently, a variant of the SDVRP, the split delivery vehicle routing problem with minimum delivery amounts (SDVRP-MDA), has been introduced. In the SDVRP-MDA, split deliveries are allowed only if at least a minimum fraction of a customer’s demand is delivered by each visiting vehicle. We perform a worst-case analysis on the SDVRP-MDA to determine tight bounds on the maximum possible savings.  相似文献   

19.
The multiple depot ring-star problem (MDRSP) is an important combinatorial optimization problem that arises in optical fiber network design and in applications that collect data using stationary sensing devices and autonomous vehicles. Given the locations of a set of customers and a set of depots, the goal is to (i) find a set of simple cycles such that each cycle (ring) passes through a subset of customers and exactly one depot, (ii) assign each non-visited customer to a visited customer or a depot, and (iii) minimize the sum of the routing costs, i.e., the cost of the cycles and the assignment costs. We present a mixed integer linear programming formulation for the MDRSP and propose valid inequalities to strengthen the linear programming relaxation. Furthermore, we present a polyhedral analysis and derive facet-inducing results for the MDRSP. All these results are then used to develop a branch-and-cut algorithm to obtain optimal solutions to the MDRSP. The performance of the branch-and-cut algorithm is evaluated through extensive computational experiments on several classes of test instances.  相似文献   

20.
The vehicle routing problem (VRP) under capacity and distance restrictions involves the design of a set of minimum cost delivery routes, originating and terminating at a central depot, which services a set of customers. Each customer must be supplied exactly once by one vehicle route. The total demand of any vehicle must not exceed the vehicle capacity. The total length of any route must not exceed a pre-specified bound. Approximate methods based on descent, hybrid simulated annealing/tabu search, and tabu search algorithms are developed and different search strategies are investigated. A special data structure for the tabu search algorithm is implemented which has reduced notably the computational time by more than 50%. An estimate for the tabu list size is statistically derived. Computational results are reported on a sample of seventeen bench-mark test problems from the literature and nine randomly generated problems. The new methods improve significantly both the number of vehicles used and the total distances travelled on all results reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号