首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the context of a single machine, multi-item, continuous-time lot sizing and scheduling problem with a production rate alternating between the two values zero and full production rate, this paper identifies classes of equivalent problem instances which differ from one another in the way in which demand is represented. Each class contains an instance with a continuous cumulated demand function, and may contain demand functions with very different shapes, including functions with discontinuities. When approaching the problem (in order to solve it numerically, or to prove analytical results etc.), it therefore becomes possible to select, from many different representations, the problem instance which best meets the requirements of the applied method.  相似文献   

2.
The aim of this work is to propose a solution approach for a capacitated lot sizing and scheduling real problem with parallel machines and shared buffers, arising in a packaging company producing yoghurt. The problem has been formulated as a hybrid Continuous Set-up and Capacitated Lot Sizing Problem (CSLP–CLSP). A new effective two stage optimisation heuristic based on the decomposition of the problem into a lot sizing problem and a scheduling problem has been developed. An assignment of mixture to buffers is made in the first stage, and therefore the corresponding orders are scheduled on the production lines by performing a local search. Computational tests have been performed on the real data provided by the company. The heuristic exhibits near-optimal solutions, all obtained in a very short computational time.  相似文献   

3.
Capacity reservation contracts allow a consumer to purchase up to a certain capacity at a unit price lower than that of the spot market, while the consumer’s excess orders are realized at the spot price. In this paper, we consider a lot sizing problem where the consumer places orders following a capacity reservation contract. In particular, we study the general problem and the polynomial time solvable special cases of the problem and propose corresponding algorithms for them.  相似文献   

4.
In this paper we present a mixed integer programming model that integrates production lot sizing and scheduling decisions of beverage plants with sequence-dependent setup costs and times. The model considers that the industrial process produces soft drink bottles in different flavours and sizes, and it is carried out in two production stages: liquid preparation (stage I) and bottling (stage II). The model also takes into account that the production bottleneck may alternate between stages I and II, and a synchronisation of the production between these stages is required. A relaxation approach and several strategies of the relax-and-fix heuristic are proposed to solve the model. Computational tests with instances generated based on real data from a Brazilian soft drink plant are also presented. The results show that the solution approaches are capable of producing better solutions than those used by the company.  相似文献   

5.
This paper presents an algorithm to define the optimal parameters for deliberated and controlled coproduction in an economic lot scheduling problem setting (DCCELSP). Coproduction is said to be deliberated and controlled because it is possible to decide whether or not to coproduce when all the parameters associated with the process are known. The aim is to determine how to produce two products most economically where deliberated coproduction is an option. For this purpose, a procedure for defining optimal lot periods is introduced. Two models are proposed for this procedure and a numerical illustration is provided to gain insight into their dynamics. The cost advantages of coproduction were found to depend on the relationship between setup and holding costs, production rates, and demand for products. The more similar these system parameters are and the higher the machine usage ratio is, the more favourable coproduction is. Additionally, if coproduction is not deliberated appropriately, costs soar.  相似文献   

6.
Several production environments require simultaneous planing of sizing and scheduling of sequences of production lots. Integration of sequencing decisions in lotsizing and scheduling problems has received an increased attention from the research community due to its inherent applicability to real world problems. A two-dimensional classification framework is proposed to survey and classify the main modeling approaches to integrate sequencing decisions in discrete time lotsizing and scheduling models. The Asymmetric Traveling Salesman Problem can be an important source of ideas to develop more efficient models and methods to this problem. Following this research line, we also present a new formulation for the problem using commodity flow based subtour elimination constraints. Computational experiments are conducted to assess the performance of the various models, in terms of running times and upper bounds, when solving real-word size instances.  相似文献   

7.
A coupling cutting stock-lot sizing problem in the paper industry   总被引:2,自引:0,他引:2  
An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.  相似文献   

8.
Good inventory management is essential for a firm to be cost competitive and to acquire decent profit in the market, and how to achieve an outstanding inventory management has been a popular topic in both the academic field and in real practice for decades. As the production environment getting increasingly complex, various kinds of mathematical models have been developed, such as linear programming, nonlinear programming, mixed integer programming, geometric programming, gradient-based nonlinear programming and dynamic programming, to name a few. However, when the problem becomes NP-hard, heuristics tools may be necessary to solve the problem. In this paper, a mixed integer programming (MIP) model is constructed first to solve the lot-sizing problem with multiple suppliers, multiple periods and quantity discounts. An efficient Genetic Algorithm (GA) is proposed next to tackle the problem when it becomes too complicated. The objectives are to minimize total costs, where the costs include ordering cost, holding cost, purchase cost and transportation cost, under the requirement that no inventory shortage is allowed in the system, and to determine an appropriate inventory level for each planning period. The results demonstrate that the proposed GA model is an effective and accurate tool for determining the replenishment for a manufacturer for multi-periods.  相似文献   

9.
This paper addresses lot sizing and scheduling problem of a flow shop system with capacity constraints, sequence-dependent setups, uncertain processing times and uncertain multi-product and multi-period demand. The evolution of the uncertain parameters is modeled by means of probability distributions and chance-constrained programming (CCP) theory. A new mixed-integer programming (MIP) model with big bucket time approach is proposed to formulate the problem. Due to the complexity of problem, two MIP-based heuristics with rolling horizon framework named non-permutation heuristic (NPH) and permutation heuristic (PH) have been performed to solve this model. Also, a hybrid meta-heuristic based on a combination of simulated annealing, firefly algorithm and proposed heuristic for scheduling is developed to solve the problem. Additionally, Taguchi method is conducted to calibrate the parameters of the meta-heuristic and select the optimal levels of the algorithm’s performance influential factors. Computational results on a set of randomly generated instances show the efficiency of the hybrid meta-heuristic against exact solution algorithm and heuristics.  相似文献   

10.
Proofs from complexity theory as well as computational experiments indicate that most lot sizing problems are hard to solve. Because these problems are so difficult, various solution techniques have been proposed to solve them. In the past decade, meta-heuristics such as tabu search, genetic algorithms and simulated annealing, have become popular and efficient tools for solving hard combinatorial optimization problems. We review the various meta-heuristics that have been specifically developed to solve lot sizing problems, discussing their main components such as representation, evaluation, neighborhood definition and genetic operators. Further, we briefly review other solution approaches, such as dynamic programming, cutting planes, Dantzig–Wolfe decomposition, Lagrange relaxation and dedicated heuristics. This allows us to compare these techniques. Understanding their respective advantages and disadvantages gives insight into how we can integrate elements from several solution approaches into more powerful hybrid algorithms. Finally, we discuss general guidelines for computational experiments and illustrate these with several examples.  相似文献   

11.
Front opening unified pods (FOUPs) are used to store and transport silicon wafers in 300-mm semiconductor wafer fabs. To achieve production efficiencies, wafers are grouped together in FOUPs without regard to the originating customer placing the order. In the resulting multiple orders per job (moj) scheduling problem, scheduling is performed at the FOUP (i.e., aggregated order) level, while scheduling performance is assessed per individual customer order. Column generation heuristics are presented for single and parallel machine moj scheduling problems to minimize total weighted order completion time. The proposed heuristics obtain near-optimal solutions very quickly, outperforming competing approaches in the literature.  相似文献   

12.
This text summarizes the PhD thesis defended by the author in January 2006 under the supervision of Professor Erik Demeulemeester at the Katholieke Universiteit Leuven. The thesis is written in English and is available from the author’s website (http://www.econ.kuleuven.be/jeroen.belien). In this research we propose a number of exact and heuristic algorithms for various scheduling problems encountered in hospitals. The emphasis lies on the design of new methodologies as well as on the applicability of the algorithms in real-life environments. The main contributions include a new decomposition approach for a particular class of staff scheduling problems, an extensive study of master surgery scheduling algorithms that aim at leveling the resultant bed occupancy and an innovative method for integrating nurse and surgery scheduling.   相似文献   

13.
In this paper, we consider a capacitated single-level dynamic lot-sizing problem with sequence-dependent setup costs and times that includes product substitution options. The model is motivated from a real-world production planning problem of a manufacturer of plastic sheets used as an interlayer in car windshields. We develop a mixed-integer programming (MIP) formulation of the problem and devise MIP-based Relax&Fix and Fix&Optimize heuristics. Unlike existing literature, we combine Fix&Optimize with a time decomposition. Also, we develop a specialized substitute decomposition and devise a computation budget allocation scheme for ensuring a uniform, efficient usage of computation time by decompositions and their subproblems. Computational experiments were performed on generated instances whose structure follows that of the considered practical application and which have rather tight production capacities. We found that a Fix&Optimize algorithm with an overlapping time decomposition yielded the best solutions. It outperformed the state-of-the-art approach Relax&Fix and all other tested algorithm variants on the considered class of instances, and returned feasible solutions with neither overtime nor backlogging for all instances. It returned solutions that were on average only 5% worse than those returned by a standard MIP solver after 4 hours and 19% better than those of Relax&Fix.  相似文献   

14.
This paper proposes an integer linear programming formulation for a simultaneous lot sizing and scheduling problem in a job shop environment. Among others, one of our realistic assumptions is dealing with flexible machines which enable the production manager to change their working speeds. Then, a number of valid inequalities are developed based on problem structures. As the valid inequalities can help in reducing the non-optimal parts of the solution space, they are dealt with as some cutting planes. The proposed cutting planes are used to solve the problem in (i) cut-and-branch, and (ii) branch-and-cut approaches. The performance of each cutting plane is investigated with CPLEX 12.2 on a set of randomly-generated test data. Then, some performance criteria are identified and the proposed cutting planes are ranked by TOPSIS method.  相似文献   

15.
This paper considers a production/inventory system where items produced/purchased are of different qualities: Types A and B. Type A items are of perfect quality, and Type B items are of imperfect quality; but not necessarily defective; and have a lower selling price. The percentage of Type A (the yield rate) is assumed to be a random variable with known probability distribution. The electronics industry gives good examples of such situations. We extend the classical single period (newsvendor) and the economic order quantity (EOQ) models by accounting for random supply and for imperfect quality (Type B) items which are assumed to have their own demand and cost structure. We develop mathematical models and prove concavity of the expected profit function for both situations. We also present detailed analysis and numerical results. We focus on comparing the profitability of the novel proposed models with models from the literature (and derivatives of these models) that develop the optimal order quantity based on the properties of Type A items only (and ignore Type B items). We find that accounting for Type B items can significantly improve profitability.  相似文献   

16.
17.
Crew scheduling problems at the planning level are typically solved in two steps: first, creating working patterns, and then assigning these to individual crew. The first step is solved with a set covering model, and the second with a set-partitioning model. At the operational level, the (re) planning period is considerably smaller than during the strategic planning phase. We integrate both models to solve time critical crew recovery problems arising on the day of operations. We describe how pairing construction and pairing assignment are done in a single step, and provide solution techniques based on simple tree search and more sophisticated column generation and shortest-path algorithms.  相似文献   

18.
Fractional aircraft ownership programs, where individuals or corporations own a fraction of an aircraft, have revolutionized the corporate aviation industry. Fractional management companies (FMC) manage all aspects of aircraft operations enabling the owners to enjoy the benefits of private aviation without the associated responsibilities. We describe here the development of a scheduling decision support tool for a leading FMC. We present mathematical models, exact and heuristic solution methods. Our computational results using real and randomly generated data indicate that these models are quite effective in finding optimal or near-optimal solutions. The first phase of the implementation of one of these models at the FMC led to a significant improvement in effective utilization of the aircraft, reduction of costs due to reduced empty moves, and hence increased profits.  相似文献   

19.
《Applied Mathematical Modelling》2014,38(21-22):5080-5091
This paper considers a group-shop scheduling problem (GSSP) with sequence-dependent set-up times (SDSTs) and transportation times. The GSSP provides a general formulation including the job-shop and the open-shop scheduling problems. The consideration of set-up and transportation times is among the most realistic assumptions made in the field of scheduling. In this paper, we study the GSSP with transportation and anticipatory SDSTs, where jobs are released at different times and there are several transporters to carry jobs. The objective is to find a job schedule that minimizes the makespan, that is, the time at which all jobs are completed and transported to the warehouse (or to the customer). The problem is formulated as a disjunctive programming problem and then prepared in a form of mixed integer linear programming (MILP). Due to the non-deterministic polynomial-time hardness (NP-hardness) of the GSSP, large instances cannot be optimally solved in a reasonable amount of time. Therefore, a genetic algorithm (GA) hybridized with an active schedule generator is proposed to tackle large-sized instances. Both Baldwinian and Lamarckian versions of the proposed hybrid algorithm are then implemented and evaluated through computational experiments.  相似文献   

20.
We analyze steady-state characteristics of batch production time for a constant-demand lot sizing problem with learning and forgetting in production time. We report a new type of convergence, the alternating convergence, in which the batch production time alternates between two different values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号