首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we examine duality for fractional programming problems in the face of data uncertainty within the framework of robust optimization. We establish strong duality between the robust counterpart of an uncertain convex–concave fractional program and the optimistic counterpart of its conventional Wolfe dual program with uncertain parameters. For linear fractional programming problems with constraint-wise interval uncertainty, we show that the dual of the robust counterpart is the optimistic counterpart in the sense that they are equivalent. Our results show that a worst-case solution of an uncertain fractional program (i.e., a solution of its robust counterpart) can be obtained by solving a single deterministic dual program. In the case of a linear fractional programming problem with interval uncertainty, such solutions can be found by solving a simple linear program.  相似文献   

2.
《Optimization》2012,61(5):713-733
This article develops the deterministic approach to duality for semi-definite linear programming problems in the face of data uncertainty. We establish strong duality between the robust counterpart of an uncertain semi-definite linear programming model problem and the optimistic counterpart of its uncertain dual. We prove that strong duality between the deterministic counterparts holds under a characteristic cone condition. We also show that the characteristic cone condition is also necessary for the validity of strong duality for every linear objective function of the original model problem. In addition, we derive that a robust Slater condition alone ensures strong duality for uncertain semi-definite linear programs under spectral norm uncertainty and show, in this case, that the optimistic counterpart is also computationally tractable.  相似文献   

3.
In this paper, we present a duality theory for fractional programming problems in the face of data uncertainty via robust optimization. By employing conjugate analysis, we establish robust strong duality for an uncertain fractional programming problem and its uncertain Wolfe dual programming problem by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. We show that our results encompass as special cases some programming problems considered in the recent literature. Moreover, we also show that robust strong duality always holds for linear fractional programming problems under scenario data uncertainty or constraint-wise interval uncertainty, and that the optimistic counterpart of the dual is tractable computationally.  相似文献   

4.
In this paper, we propose a duality theory for semi-infinite linear programming problems under uncertainty in the constraint functions, the objective function, or both, within the framework of robust optimization. We present robust duality by establishing strong duality between the robust counterpart of an uncertain semi-infinite linear program and the optimistic counterpart of its uncertain Lagrangian dual. We show that robust duality holds whenever a robust moment cone is closed and convex. We then establish that the closed-convex robust moment cone condition in the case of constraint-wise uncertainty is in fact necessary and sufficient for robust duality. In other words, the robust moment cone is closed and convex if and only if robust duality holds for every linear objective function of the program. In the case of uncertain problems with affinely parameterized data uncertainty, we establish that robust duality is easily satisfied under a Slater type constraint qualification. Consequently, we derive robust forms of the Farkas lemma for systems of uncertain semi-infinite linear inequalities.  相似文献   

5.
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. A robust strong duality theorem is given whenever the Lagrangian function is convex. We provide classes of uncertain non-convex programming problems for which robust strong duality holds under a constraint qualification. In particular, we show that robust strong duality is guaranteed for non-convex quadratic programming problems with a single quadratic constraint with the spectral norm uncertainty under a generalized Slater condition. Numerical examples are given to illustrate the nature of robust duality for uncertain nonlinear programming problems. We further show that robust duality continues to hold under a weakened convexity condition.  相似文献   

6.
In this paper we present a robust conjugate duality theory for convex programming problems in the face of data uncertainty within the framework of robust optimization, extending the powerful conjugate duality technique. We first establish robust strong duality between an uncertain primal parameterized convex programming model problem and its uncertain conjugate dual by proving strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem under a regularity condition. This regularity condition is not only sufficient for robust duality but also necessary for it whenever robust duality holds for every linear perturbation of the objective function of the primal model problem. More importantly, we show that robust strong duality always holds for partially finite convex programming problems under scenario data uncertainty and that the optimistic counterpart of the dual is a tractable finite dimensional problem. As an application, we also derive a robust conjugate duality theorem for support vector machines which are a class of important convex optimization models for classifying two labelled data sets. The support vector machine has emerged as a powerful modelling tool for machine learning problems of data classification that arise in many areas of application in information and computer sciences.  相似文献   

7.
In this paper, we consider robust optimal solutions for a convex optimization problem in the face of data uncertainty both in the objective and constraints. By using the properties of the subdifferential sum formulae, we first introduce a robust-type subdifferential constraint qualification, and then obtain some completely characterizations of the robust optimal solution of this uncertain convex optimization problem. We also investigate Wolfe type robust duality between the uncertain convex optimization problem and its uncertain dual problem by proving duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem. Moreover, we show that our results encompass as special cases some optimization problems considered in the recent literature.  相似文献   

8.
In this paper, we introduce a new dual program, which is representable as a semidefinite linear programming problem, for a primal convex minimax programming problem, and we show that there is no duality gap between the primal and the dual whenever the functions involved are sum-of-squares convex polynomials. Under a suitable constraint qualification, we derive strong duality results for this class of minimax problems. Consequently, we present applications of our results to robust sum-of-squares convex programming problems under data uncertainty and to minimax fractional programming problems with sum-of-squares convex polynomials. We obtain these results by first establishing sum-of-squares polynomial representations of non-negativity of a convex max function over a system of sum-of-squares convex constraints. The new class of sum-of-squares convex polynomials is an important subclass of convex polynomials and it includes convex quadratic functions and separable convex polynomials. The sum-of-squares convexity of polynomials can numerically be checked by solving semidefinite programming problems whereas numerically verifying convexity of polynomials is generally very hard.  相似文献   

9.
We establish sufficient optimality conditions for a class of nondifferentiable minimax fractional programming problems involving (F, α, ρ, d)-convexity. Subsequently, we apply the optimality conditions to formulate two types of dual problems and prove appropriate duality theorems. The authors thank the referee for valuable suggestions improving the presentation of the paper.  相似文献   

10.
《Optimization》2012,61(4-5):617-627
Without the need of a constraint qualification, we establish the necessary and sufficient optimality conditions for minimax fractional programming. Using these optimality conditions, we construct a mixed dual model which unifies the Mond–Weir dual, Wolfe dual and a parameter dual models. Several duality theorems are established. Consequently, this article partly solves the problem posed by Lai et al. [H.C. Lai, J.C. Liu and K. Tanaka (1999). Duality without a constraint qualification for minimax fractional programming. Journal of Optimization Theory and Applications, 101, 109–125.].  相似文献   

11.
《Optimization》2012,61(3):207-214
Optimality results are derived for a general minimax programming problem under non-differentiable pseudo-convexity assumptions. A dual in terms of Dini derivatives is introduced and duality results are established. Finally, two duals again in terms of Dini derivatives are introduced for a generalized fractional minimax programming problem and corresponding results are studied.  相似文献   

12.
Modelling of convex optimization in the face of data uncertainty often gives rise to families of parametric convex optimization problems. This motivates us to present, in this paper, a duality framework for a family of parametric convex optimization problems. By employing conjugate analysis, we present robust duality for the family of parametric problems by establishing strong duality between associated dual pair. We first show that robust duality holds whenever a constraint qualification holds. We then show that this constraint qualification is also necessary for robust duality in the sense that the constraint qualification holds if and only if robust duality holds for every linear perturbation of the objective function. As an application, we obtain a robust duality theorem for the best approximation problems with constraint data uncertainty under a strict feasibility condition.  相似文献   

13.
We prove that a minmax fractional programming problem is equivalent to a minimax nonfractional parametric problem for a given parameter in complex space. Using a parametric approach, we establish the Kuhn-Tucker type necessary optimality conditions and prove the existence theorem of optimality for complex minimax fractional programming in the framework of generalized convexity. Subsequently, we apply the optimality conditions to formulate a one-parameter dual problem and prove weak duality, strong duality, and strict converse duality theorems involving generalized convex complex functions. This research was partly supported by NSC, Taiwan.  相似文献   

14.
In this paper, we present necessary optimality conditions for nondifferentiable minimax fractional programming problems. A new concept of generalized convexity, called (C, α, ρ, d)-convexity, is introduced. We establish also sufficient optimality conditions for nondifferentiable minimax fractional programming problems from the viewpoint of the new generalized convexity. When the sufficient conditions are utilized, the corresponding duality theorems are derived for two types of dual programs. This research was partially supported by NSF and Air Force grants  相似文献   

15.
Considering a nonsmooth minimax fractional programming problem involving exponential (p, r)-invexity, we construct a mixed-type dual problem, which is performed by an incomplete Lagrangian dual model. This mixed-type dual model involves the Wolfe type dual and Mond-Weir type dual as the special cases under exponential (p, r)-invexity. We establish the mixed-type duality problem with conditions for exponential (p, r)-invexity and prove that the optimal values of the primary problem and the mixed-type duality problem have no duality gap under the framwork of exponential (p, r)-invexity.  相似文献   

16.
We establish the sufficient optimality conditions for a minimax programming problem involving p fractional n-set functions under generalized invexity. Using incomplete Lagrange duality, we formulate a mixed-type dual problem which unifies the Wolfe type dual and Mond-Weir type dual in fractional n-set functions under generalized invexity. Furthermore, we establish three duality theorems: weak, strong, and strict converse duality theorem, and prove that the optimal values of the primal problem and the mixed-type dual problem have no duality gap under extra assumptions in the framework. This research was partly supported by the National Science Council, NSC 94-2115-M-033-003, Taiwan.  相似文献   

17.
We establish the necessary and sufficient optimality conditions for a class of nondifferentiable minimax fractional programming problems solving generalized convex functions. Subsequently, we apply the optimality conditions to formulate one parametric dual problem and we prove weak duality, strong duality, and strict converse duality theorems.  相似文献   

18.
We consider maximin and minimax nonlinear mixed integer programming problems which are nonsymmetric in duality sense. Under weaker (pseudo-convex/pseudo-concave) assumptions, we show that the supremum infimum of the maximin problem is greater than or equal to the infimum supremum of the minimax problem. As a particular case, this result reduces to the weak duality theorem for minimax and symmetric dual nonlinear mixed integer programming problems. Further, this is used to generalize available results on minimax and symmetric duality in nonlinear mixed integer programming.  相似文献   

19.
Robust optimization problems, which have uncertain data, are considered. We prove surrogate duality theorems for robust quasiconvex optimization problems and surrogate min–max duality theorems for robust convex optimization problems. We give necessary and sufficient constraint qualifications for surrogate duality and surrogate min–max duality, and show some examples at which such duality results are used effectively. Moreover, we obtain a surrogate duality theorem and a surrogate min–max duality theorem for semi-definite optimization problems in the face of data uncertainty.  相似文献   

20.
The zero duality gap that underpins the duality theory is one of the central ingredients in optimisation. In convex programming, it means that the optimal values of a given convex program and its associated dual program are equal. It allows, in particular, the development of efficient numerical schemes. However, the zero duality gap property does not always hold even for finite-dimensional problems and it frequently fails for problems with non-polyhedral constraints such as the ones in semidefinite programming problems. Over the years, various criteria have been developed ensuring zero duality gaps for convex programming problems. In the present work, we take a broader view of the zero duality gap property by allowing it to hold for each choice of linear perturbation of the objective function of the given problem. Globalising the property in this way permits us to obtain complete geometric dual characterisations of a stable zero duality gap in terms of epigraphs and conjugate functions. For convex semidefinite programs, we establish necessary and sufficient dual conditions for stable zero duality gaps, as well as for a universal zero duality gap in the sense that the zero duality gap property holds for each choice of constraint right-hand side and convex objective function. Zero duality gap results for second-order cone programming problems are also given. Our approach makes use of elegant conjugate analysis and Fenchel's duality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号