首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with a multiobjective combinatorial optimization problem called Extended Knapsack Problem. By applying multi-start search and path relinking we rapidly guide the search toward the most balanced zone of the Pareto-optimal front. The Pareto relation is applied in order to designate a subset of the best generated solutions to be the current efficient set of solutions. The max-min criterion with the Hamming distance is used as a measure of dissimilarity in order to find diverse solutions to be combined. The performance of our approach is compared with several state-of-the-art MOEAs for a suite test problems taken from the literature.  相似文献   

2.
We present the main results in the author’s Ph.D. thesis (Iori 2004), defended at the University of Bologna in April 2004 and supervised by S. Martello. The thesis is written in English and is available from the author upon request. It proposes exact and metaheuristic algorithms for solving some relevant combinatorial optimization problems, with particular emphasis on scheduling, two-dimensional cutting and packing and capacitated vehicle routing. The performance of each algorithm is tested through extensive computational experiments and comparison with other approaches in the literature.Received: 21 September 2004, AMS classification: 90-08, 90C27, 90C59  相似文献   

3.
The design of effective neighborhood structures is fundamental to the performance of local search and metaheuristic algorithms for combinatorial optimization. Significant efforts have been made in the creation of larger and more powerful neighborhoods that are able to explore the solution space more extensively and effectively while keeping computation complexity within acceptable levels. The most important advances in this domain derive from dynamic and adaptive neighborhood constructions originating in ejection chain methods and a special form of a candidate list design that constitutes the core of the filter-and-fan method. The objective of this paper is to lay out the general framework of the ejection chain and filter-and-fan methods and present applications to a number of important combinatorial optimization problems. The features of the methods that make them effective in these applications is expected to provide insights into solving challenging problems in other settings.  相似文献   

4.
The augmented-neural-network (AugNN) approach has been applied lately to some NP-Hard combinatorial problems, such as task scheduling, open-shop scheduling and resource-constraint project scheduling. In this approach the problem of search in the solution-space is transformed to a search in a weight-matrix space, much like in a neural-network approach. Some weight adjustment strategies are then used to converge to a good set of weights for a locally optimal solution. While empirical results have demonstrated the effectiveness of the AugNN approach vis-à-vis a few other metaheuristics, little theoretical insights exist which justify this approach and explain the effectiveness thereof. This paper provides some theoretical insights and justification for the AugNN approach through some basic theorems and also describes the algorithm and the formulation with the help of examples.  相似文献   

5.
We study the convergence properties of reduced Hessian successive quadratic programming for equality constrained optimization. The method uses a backtracking line search, and updates an approximation to the reduced Hessian of the Lagrangian by means of the BFGS formula. Two merit functions are considered for the line search: the 1 function and the Fletcher exact penalty function. We give conditions under which local and superlinear convergence is obtained, and also prove a global convergence result. The analysis allows the initial reduced Hessian approximation to be any positive definite matrix, and does not assume that the iterates converge, or that the matrices are bounded. The effects of a second order correction step, a watchdog procedure and of the choice of null space basis are considered. This work can be seen as an extension to reduced Hessian methods of the well known results of Powell (1976) for unconstrained optimization.This author was supported, in part, by National Science Foundation grant CCR-8702403, Air Force Office of Scientific Research grant AFOSR-85-0251, and Army Research Office contract DAAL03-88-K-0086.This author was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under contracts W-31-109-Eng-38 and DE FG02-87ER25047, and by National Science Foundation Grant No. DCR-86-02071.  相似文献   

6.
On multilevel iterative methods for optimization problems   总被引:2,自引:0,他引:2  
This paper is concerned with multilevel iterative methods which combine a descent scheme with a hierarchy of auxiliary problems in lower dimensional subspaces. The construction of auxiliary problems as well as applications to elasto-plastic model and linear programming are described. The auxiliary problem for the dual of a perturbed linear program is interpreted as a dual of perturbed aggregated linear program. Coercivity of the objective function over the feasible set is sufficient for the boundedness of the iterates. Equivalents of this condition are presented in special cases.Supported by NSF under grant DMS-8704169, AFOSR under grant 86-0126, and ONR under Contract N00014-83-K-0104. Consulting for American Airlines Decision Technologies, MD 2C55, P.O. Box 619616, DFW, TX 75261-9616, USA.Supported by NSF under grant DMS-8704169 and AFOSR under grant 86-0126.  相似文献   

7.
The most important classes of Newton-type methods for solving constrained optimization problems are discussed. These are the sequential quadratic programming methods, active set methods, and semismooth Newton methods for Karush-Kuhn-Tucker systems. The emphasis is placed on the behavior of these methods and their special modifications in the case where assumptions concerning constraint qualifications are relaxed or altogether dropped. Applications to optimization problems with complementarity constraints are examined.  相似文献   

8.
Two improvements for the algorithm of Breiman and Cutler are presented. Better envelopes can be built up using positive quadratic forms. Better utilization of first and second derivative information is attained by combining both global aspects of curvature and local aspects near the global optimum. The basis of the results is the geometric viewpoint developed by the first author and can be applied to a number of covering type methods. Improvements in convergence rates are demonstrated empirically on standard test functions.Partially supported by an University of Canterbury Erskine grant.  相似文献   

9.
We suggest a new heuristic for solving unconstrained continuous optimization problems. It is based on a generalized version of the variable neighborhood search metaheuristic. Different neighborhoods and distributions, induced from different metrics are ranked and used to get random points in the shaking step. We also propose VNS for solving constrained optimization problems. The constraints are handled using exterior point penalty functions within an algorithm that combines sequential and exact penalty transformations. The extensive computer analysis that includes the comparison with genetic algorithm and some other approaches on standard test functions are given. With our approach we obtain encouraging results.  相似文献   

10.
On a class of hybrid methods for smooth constrained optimization   总被引:1,自引:0,他引:1  
With reference to smooth nonlinearly constrained optimization problems, we consider combinations of locally superlinearly convergent methods with globally convergent ones. The aim of this paper is threefold: to give a survey on well-known as well as possible unknown hybrid optimization methods, based on a special construction principle; to present a general convergence result for the class of hybrid algorithms; and to derive further methods for this class with new convergence properties.The authors thank the anonymous referees for their useful suggestions.  相似文献   

11.
In this paper we present a review of approximative solution methods, that is, heuristics and metaheuristics designed for the solution of multiobjective combinatorial optimization problems (MOCO). First, we discuss questions related to approximation in this context, such as performance ratios, bounds, and quality measures. We give some examples of heuristics proposed for the solution of MOCO problems. The main part of the paper covers metaheuristics and more precisely non-evolutionary methods. The pioneering methods and their derivatives are described in a unified way. We provide an algorithmic presentation of each of the methods together with examples of applications, extensions, and a bibliographic note. Finally, we outline trends in this area. The research of M. Ehrgott has been partially supported by University of Auckland grant 3602178/9275 and grant Ka 477/27-1 of the Deutsche Forschungsgemeinschaft (DFG).  相似文献   

12.
13.
New variants of greedy algorithms, called advanced greedy algorithms, are identified for knapsack and covering problems with linear and quadratic objective functions. Beginning with single-constraint problems, we provide extensions for multiple knapsack and covering problems, in which objects must be allocated to different knapsacks and covers, and also for multi-constraint (multi-dimensional) knapsack and covering problems, in which the constraints are exploited by means of surrogate constraint strategies. In addition, we provide a new graduated-probe strategy for improving the selection of variables to be assigned values. Going beyond the greedy and advanced greedy frameworks, we describe ways to utilize these algorithms with multi-start and strategic oscillation metaheuristics. Finally, we identify how surrogate constraints can be utilized to produce inequalities that dominate those previously proposed and tested utilizing linear programming methods for solving multi-constraint knapsack problems, which are responsible for the current best methods for these problems. While we focus on 0–1 problems, our approaches can readily be adapted to handle variables with general upper bounds.  相似文献   

14.
Recently, a general-purpose local-search heuristic method called extremal optimization (EO) has been successfully applied to some NP-hard combinatorial optimization problems. This paper presents an investigation on EO with its application in numerical multiobjective optimization and proposes a new novel elitist (1 + λ) multiobjective algorithm, called multiobjective extremal optimization (MOEO). In order to extend EO to solve the multiobjective optimization problems, the Pareto dominance strategy is introduced to the fitness assignment of the proposed approach. We also present a new hybrid mutation operator that enhances the exploratory capabilities of our algorithm. The proposed approach is validated using five popular benchmark functions. The simulation results indicate that the proposed approach is highly competitive with the state-of-the-art multiobjective evolutionary algorithms. Thus MOEO can be considered a good alternative to solve numerical multiobjective optimization problems.  相似文献   

15.
New heuristics for the maximum diversity problem   总被引:1,自引:0,他引:1  
The maximum diversity problem (MDP) consists of identifying, in a population, a subset of elements, characterized by a set of attributes, that present the most diverse characteristics among the elements of the subset. The identification of such solution is an NP-hard problem. Some heuristics are available to obtain approximate solutions for this problem. In this paper, we propose different GRASP heuristics for the MDP, using distinct construction procedures and including a path-relinking technique. Performance comparison among related work and the proposed heuristics is provided. Experimental results show that the new GRASP heuristics are quite robust and are able to find high-quality solutions in reasonable computational times. G.C. Silva’s work sponsored by CAPES MSc scholarship. L.S. Ochi’s work sponsored by CNPq research grants 304103/2003-9 and 550059/2005-9. S.L. Martins’s work sponsored by CNPq research grant 475124/03-0. A. Plastino’s work sponsored by CNPq research grants 300879/00-8 and 475124/03-0.  相似文献   

16.
Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of thousands of variables. In the paper [Haarala, Miettinen, Mäkelä, Optimization Methods and Software, 19, (2004), pp. 673–692] we have described an efficient method for large-scale nonsmooth optimization. In this paper, we introduce a new variant of this method and prove its global convergence for locally Lipschitz continuous objective functions, which are not necessarily differentiable or convex. In addition, we give some encouraging results from numerical experiments.  相似文献   

17.
We show how we can linearize individual probabilistic linear constraints with binary variables when all coefficients are independently distributed according to either N(μi,λμi), for some λ>0 and μi>0, or Γ(ki,θ) for some θ>0 and ki>0. The constraint can also be linearized when the coefficients are independent and identically distributed and either positive or strictly stable random variables.  相似文献   

18.
《Optimization》2012,61(6):945-962
Typically, practical optimization problems involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such problems are restricted to certain meaningful intervals. In this article, we propose an efficient adaptive limited memory bundle method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization. The method combines the nonsmooth variable metric bundle method and the smooth limited memory variable metric method, while the constraint handling is based on the projected gradient method and the dual subspace minimization. The preliminary numerical experiments to be presented confirm the usability of the method.  相似文献   

19.
20.
Semidefinite programming in combinatorial optimization   总被引:7,自引:0,他引:7  
We discuss the use of semidefinite programming for combinatorial optimization problems. The main topics covered include (i) the Lovász theta function and its applications to stable sets, perfect graphs, and coding theory, (ii) the automatic generation of strong valid inequalities, (iii) the maximum cut problem and related problems, and (iv) the embedding of finite metric spaces and its relationship to the sparsest cut problem. Part of this work is supported by NSF contract 9623859-CCR, a Sloan Foundation Fellowship, and ARPA Contract N00014-95-1-1246.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号