共查询到10条相似文献,搜索用时 0 毫秒
1.
This paper presents a multi-level Taguchi-factorial two-stage stochastic programming (MTTSP) approach for supporting water resources management under parameter uncertainties and their interactions. MTTSP is capable of performing uncertainty analysis, policy analysis, factor screening, and interaction detection in a comprehensive and systematic way. A water resources management problem is used to demonstrate the applicability of the proposed approach. The results indicate that interval solutions can be generated for the objective function and decision variables, and a variety of decision alternatives can be obtained under different policy scenarios. The experimental data obtained from the Taguchi’s orthogonal array design are helpful in identifying the significant factors affecting the total net benefit. Then the findings from the multi-level factorial experiment reveal the latent interactions among those important factors and their curvature effects on the model response. Such a sequential strategy of experimental designs is useful in analyzing the interactions for a large number of factors in a computationally efficient manner. 相似文献
2.
We consider the situation when a scarce renewable resource should be periodically distributed between different users by a Resource Management Authority (RMA). The replenishment of this resource as well as users demand is subject to considerable uncertainty. We develop cost optimization and risk management models that can assist the RMA in its decision about striking the balance between the level of target delivery to the users and the level of risk that this delivery will not be met. These models are based on utilization and further development of the general methodology of stochastic programming for scenario optimization, taking into account appropriate risk management approaches. By a scenario optimization model we obtain a target barycentric value with respect to selected decision variables. A successive reoptimization of deterministic model for the worst case scenarios allows the reduction of the risk of negative consequences derived from unmet resources demand. Our reference case study is the distribution of scarce water resources. We show results of some numerical experiments in real physical systems. 相似文献
3.
A decision support model to help public water agencies allocate surface water among farmers and authorize the use of groundwater for irrigation (especially in Mediterranean dry regions) is developed. This is a stochastic goal programming approach with two goals, the first concerning farm management while the other concerns environmental impact. Targets for both goals are established by the agency. This model yields three reduction factors to decide the different reductions in available surface water, standard groundwater and complementary groundwater that the agency should grant/authorize for irrigation, this depending on if it is a dry or wet year. In drought periods, the model recommends using more groundwater (in percentage) than in wet periods. A case study using year-to-year statistical information on available water over the period 1941–2005 is developed through numerical tables. A step-by-step computational process is presented in detail. 相似文献
4.
The linear programming (LP) approach has been commonly proposed for joint cost allocation purposes. Within a LP framework, the allocation rules are based on a marginal analysis. Unfortunately, the additivity property which is required to completely allocate joint costs fails in presence of capacity, institutional or environmental constraints. 相似文献
5.
Elevated fuel loads are contributing to an increase in the occurrence of, and area burned by, severe wildfires in many regions across the globe. In an attempt to reverse this trend, fire and land management agencies are investing in extensive fuel management programs. However, the planning of fuel treatment activities poses complicated decision-making problems with spatial and temporal dimensions. Here, we present a mixed integer programming model for spatially explicit multi-period scheduling of fuel treatments. The model provides a flexible framework that allows for landscape heterogeneity and a range of ecological and operational considerations and constraints. The model’s functionality is demonstrated on a series of hypothetical test landscapes and a number of implementation issues are discussed. 相似文献
6.
Airborne radars are widely used to perform a large variety of tasks in an aircraft (searching, tracking, identifying targets, etc.) Such tasks play a crucial role for the aircraft and they are repeated in a “more or less” cyclic fashion. This defines a scheduling problem that impacts a lot on the quality of the radar output and on the overall safety of the aircraft. 相似文献
7.
In this work, we investigate two groundwater inventory management schemes with multiple users in a dynamic game-theoretic structure: (i) under the centralized management scheme, users are allowed to pump water from a common aquifer with the supervision of a social planner, and (ii) under the decentralized management scheme, each user is allowed to pump water from a common aquifer making usage decisions individually in a non-cooperative fashion. This work is motivated by the work of Saak and Peterson [14], which considers a model with two identical users sharing a common aquifer over a two-period planning horizon. In our work, the model and results of Saak and Peterson [14] are generalized in several directions. We first build on and extend their work to the case of n non-identical users distributed over a common aquifer region. Furthermore, we consider two different geometric configurations overlying the aquifer, namely, the strip and the ring configurations. In each configuration, general analytical results of the optimal groundwater usage are obtained and numerical examples are discussed for both centralized and decentralized problems. 相似文献
8.
Dmytro Matsypura Oleg A. Prokopyev Aizat Zahar 《European Journal of Operational Research》2018,264(2):774-796
Wildfires are a common phenomenon on most continents. They have occurred for an estimated 60 million years and are part of a regular climatic cycle. Nevertheless, wildfires represent a real and continuing problem that can have a major impact on people, wildlife and the environment. The intensity and severity of wildfires can be reduced through fuel management activities. The most common and effective fuel management activity is prescribed burning. We propose a multi-period optimization framework based on mixed integer programming (MIP) techniques to determine the optimal spatial allocation of prescribed burning activities over a finite planning horizon. In contrast to the existing fuel management optimization literature, we model fuel accumulation with Olson’s equation. To capture potential fire spread along with irregular landscape connectivity considerations, we use a graph-theoretical approach that allows us to exploit graph connectivity measures (e.g., the number of connected components) as optimization objectives. The resulting mathematical programs can be tackled by general purpose MIP solvers, while for handling larger instances we propose a simple heuristic. Our computational experiments with test instances constructed based on real-life data reveal interesting insights and demonstrate the advantages and limitations of the proposed approaches. 相似文献
9.
Models and algorithms to improve earthwork operations in road design using mixed integer linear programming 总被引:1,自引:0,他引:1
In road construction, earthwork operations account for about 25% of the construction costs. Existing linear programming models for earthwork optimization are designed to minimize the hauling costs and to balance the earth across the construction site. However, these models do not consider the removal of physical blocks that may influence the earthwork process. As such, current models may result in inaccurate estimates of optimal earthwork costs, leading to poor choices in road design. In this research, we extend the classical linear program model of earthwork operations to a mixed integer linear program model that accounts for blocks. We examine the economic impact of incorporating blocks via mixed integer linear programming, and find significant savings for most road designs in our test-set. However, the resulting model is considerably harder to solve than the original linear program. Based on structural observations, we introduce a set of algorithms that theoretically reduce the solving time of the model. We confirm this reduction in solve time with numerical experiments. 相似文献
10.
Recently a number of papers were written that present low-complexity interior-point methods for different classes of convex programs. The goal of this article is to show that the logarithmic barrier function associated with these programs is self-concordant. Hence the polynomial complexity results for these convex programs can be derived from the theory of Nesterov and Nemirovsky on self-concordant barrier functions. We also show that the approach can be applied to some other known classes of convex programs.This author's research was supported by a research grant from SHELL.On leave from the Eötvös University, Budapest, Hungary. This author's research was partially supported by OTKA No. 2116. 相似文献