首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
We consider the problem of assigning stockkeeping units to distribution centers (DCs) belonging to different DC types of a retail network, e.g., central, regional, and local DCs. The problem is motivated by the real situation of a retail company and solved by an MIP solution approach. The MIP model reflects the interdependencies between inbound transportation, outbound transportation and instore logistics as well as capital tied up in inventories and differences in picking costs between the warehouses. A novel solution approach is developed and applied to a real-life case of a leading European grocery retail chain. The application of the new approach results in cost savings of 6% of total operational costs compared to the present assignment. These savings amount to several million euros per year. In-depth analyses of the results and sensitivity analyses provide insights into the solution structure and the major related issues.  相似文献   

2.
We consider coordination among stocking locations through replenishment strategies that take explicitly into consideration transshipments, transfer of a product among locations at the same echelon level. We incorporate transportation capacity such that transshipment quantities between stocking locations are bounded due to transportation media or the location’s transshipment policy. We model different cases of transshipment capacity as a capacitated network flow problem embedded in a stochastic optimization problem. Under the assumption of instantaneous transshipments, we develop a solution procedure based on infinitesimal perturbation analysis to solve the stochastic optimization problem, where the objective is to find the policy that minimizes the expected total cost of inventory, shortage, and transshipments. Such a numerical approach provides the flexibility to solve complex problems. Investigating two problem settings, we show the impact of transshipment capacity between stocking locations on system behavior. We observe that transportation capacity constraints not only increase total cost, they also modify the inventory distribution throughout the network.  相似文献   

3.
4.
The classical economic lot-sizing problem assumes that a single supplier and a single transportation mode are used to replenish the inventory. This paper studies an extension of this problem where several suppliers and transportation modes are available. The decision-making process in this case involves identifying (i) the timing for an order; (ii) the choice of shipment modes; and (iii) the order size for each mode. The problem is defined as a network flow problem with multiple setups cost function and additional side constraints. This study provides an MIP formulation for the problem. We also provide an additional formulation of the problem by redefining its decision variables and show that the dual of the corresponding LP-relaxation has a special structure. We take advantage of the structure of the dual problem to develop a primal–dual algorithm that generates tight lower and upper bounds. Computational results demonstrate the effectiveness of the algorithm.  相似文献   

5.
This study shows how data envelopment analysis (DEA) can be used to reduce vertical dimensionality of certain data mining databases. The study illustrates basic concepts using a real-world graduate admissions decision task. It is well known that cost sensitive mixed integer programming (MIP) problems are NP-complete. This study shows that heuristic solutions for cost sensitive classification problems can be obtained by solving a simple goal programming problem by that reduces the vertical dimension of the original learning dataset. Using simulated datasets and a misclassification cost performance metric, the performance of proposed goal programming heuristic is compared with the extended DEA-discriminant analysis MIP approach. The holdout sample results of our experiments shows that the proposed heuristic approach outperforms the extended DEA-discriminant analysis MIP approach.  相似文献   

6.
A typical warehouse or distribution centre ships material to various customer locations across the country, using various modes of transportation. Each mode has different constraints on size of shipment, different cost structures and different transportation times. Typically, for a given warehouse there are certain customer locations that receive frequent shipments of material. It is often possible, therefore, for the warehouse to consolidate different orders for the same customer location into a single shipment. The transportation mode and the day of shipment must be chosen such that the consolidated shipment meets the size constraints and arrives within an agreed-upon ‘delivery window’. In preparing a warehouse distribution plan, a planner seeks to achieve transportation economies of scale (by consolidating two or more orders into fewer shipments) while levelling the workload on warehouse resources and ensuring that material arrives at a customer location during the acceptable delivery window.The problem of deciding what shipments to make daily can be formulated as a set partitioning problem with side constraints. This paper describes a heuristic solution approach for this problem. Computational experiments using actual warehouse select activity indicate that, for moderate-size problems, the heuristic produces solutions with transportation costs that are within a few percent of optimal. Larger problems found in practice are generally too large to be solved by optimal algorithms; the heuristic easily handles such problems. The heuristic has been integrated into the transportation planning system of a leading distributor of telecommunications products.  相似文献   

7.
This article addresses a scheduling problem for a chemical research laboratory. Activities with potentially variable, non-rectangular resource allocation profiles must be scheduled on discrete renewable resources. A mixed-integer programming (MIP) formulation for the problem includes maximum time lags, custom resource allocation constraints, and multiple nonstandard objectives. We present a list scheduling heuristic that mimics the human decision maker and thus provides reference solutions. These solutions are the basis for an automated learning-based determination of coefficients for the convex combination of objectives used by the MIP and a dedicated variable neighborhood search (VNS) approach. The development of the VNS also involves the design of new neighborhood structures that prove particularly effective for the custom objectives under consideration. Relative improvements of up to 60% are achievable for isolated objectives, as demonstrated by the final computational study based on a broad spectrum of randomly generated instances of different sizes and real-world data from the company’s live system.  相似文献   

8.
This paper considers a coordinated scheduling problem. For the first-stage transportation there is a crane available to transport the product from the warehouse to a batching machine. For the second-stage transportation there is a vehicle available to deliver the completed jobs from the machine shop floor to the customer. The coordinated scheduling problem of production and transportation deals with sequencing the transportation of the jobs and combining them into batches to be processed. The problem of minimizing the sum of the makespan and the total setup cost was proven by Tang and Gong [1] to be strongly NP-hard. This paper proposes two genetic algorithm (GA) approaches for this scheduling problem, with different result representations. The experimental results demonstrate that a regular GA and a modified GA (MGA) can find near-optimal solutions within an acceptable amount of computational time. Among the two proposed metaheuristic approaches, the MGA is superior to the GA both in terms of computing time and the quality of the solution.  相似文献   

9.
A stochastic inventory routing problem (SIRP) is typically the combination of stochastic inventory control problems and NP-hard vehicle routing problems, which determines delivery volumes to the customers that the depot serves in each period, and vehicle routes to deliver the volumes. This paper aims to solve a large scale multi-period SIRP with split delivery (SIRPSD) where a customer??s delivery in each period can be split and satisfied by multiple vehicle routes if necessary. This paper considers SIRPSD under the multi-criteria of the total inventory and transportation costs, and the service levels of customers. The total inventory and transportation cost is considered as the objective of the problem to minimize, while the service levels of the warehouses and the customers are satisfied by some imposed constraints and can be adjusted according to practical requests. In order to tackle the SIRPSD with notorious computational complexity, we first propose an approximate model, which significantly reduces the number of decision variables compared to its corresponding exact model. We then develop a hybrid approach that combines the linearization of nonlinear constraints, the decomposition of the model into sub-models with Lagrangian relaxation, and a partial linearization approach for a sub model. A near optimal solution of the model found by the approach is used to construct a near optimal solution of the SIRPSD. Randomly generated instances of the problem with up to 200 customers and 5 periods and about 400 thousands decision variables where half of them are integer are examined by numerical experiments. Our approach can obtain high quality near optimal solutions within a reasonable amount of computation time on an ordinary PC.  相似文献   

10.
Supplier selection with quantity discounts has been an active research problem in the literature. In this paper, we focus on a new real-world quantity discounts scheme, where suppliers are selected in the beginning of a strategic planning period (e.g., 5 years). Monthly orders are placed from the selected suppliers, but the quantity discounts are based on the aggregated annual order quantities. We incorporate this type of cost structure in a multi-period, multi-product, multi-echelon supply chain planning problem, and develop a mixed integer linear programming (MIP) model for it. Our model is highly intractable; leading commercial solvers cannot construct high quality feasible solutions for realistic instances even after multiple hours of solution time. We develop an algorithm that constructs an initial feasible solution and a large neighborhood search method that combines two customized iterative algorithms based on MIP-based local search and improves such solution. We report numerical results for a food supply chain application and show the efficiency of using our methodology in getting very high quality primal solutions quickly.  相似文献   

11.
After-sales services have become high-margin businesses that account for larger portions of corporate profits. Delivering the after-sales services is challenging as after-sales services supply chains are significantly different than production–distribution supply chains. The literature provides little guidance on the use of quantitative methods for after-sales services network design. We present a mixed integer linear programming problem formulation to determine warehouse locations, assign repair vendors to facilities and choose mode of transportation while minimizing the total network cost. We transform the large-scale real-life problem of a household appliances manufacturer into a smaller scale to solve optimally in reasonable time. Through a scenario-based approach, we evaluate different configurations of a decentralized network with choices of transportation mode. We test the sensitivity of the solutions. The total cost decreases with additional choices of transportation mode and only slightly increases with the next-day delivery policy while the network solution may change significantly.  相似文献   

12.
We give a new mixed integer programming (MIP) formulation for the quadratic cost partition problem that is derived from a MIP formulation for maximizing a submodular function. Several classes of valid inequalities for the convex hull of the feasible solutions are derived using the valid inequalities for the node packing polyhedron. Facet defining conditions and separation algorithms are discussed and computational results are reported.  相似文献   

13.
We consider a multi-period inventory/distribution planning problem (MPIDP) in a one-warehouse multiretailer distribution system where a fleet of heterogeneous vehicles delivers products from a warehouse to several retailers. The objective of the MPIDP is to minimise transportation costs for product delivery and inventory holding costs at retailers over the planning horizon. In this research, the problem is formulated as a mixed integer linear programme and solved by a Lagrangian relaxation approach. A subgradient optimisation method is employed to obtain lower bounds. We develop a Lagrangian heuristic algorithm to find a good feasible solution of the MPIDP. Computational experiments on randomly generated test problems showed that the suggested algorithm gave relatively good solutions in a reasonable amount of computation time.  相似文献   

14.
In this paper, we introduce a new variant of the Vehicle Routing Problem (VRP), namely the Two-Stage Vehicle Routing Problem with Arc Time Windows (TS_VRP_ATWs) which generally emerges from both military and civilian transportation. The TS_VRP_ATW is defined as finding the vehicle routes in such a way that each arc of the routes is available only during a predefined time interval with the objective of overall cost minimization. We propose a Mixed Integer Programming (MIP) formulation and a heuristic approach based on Memetic Algorithm (MA) to solve the TS_VRP_ATW. The qualities of both solution approaches are measured by using the test problems in the literature. Experimental results show that the proposed MIP formulation provides the optimal solutions for the test problems with 25 and 50 nodes, and some test problems with 100 nodes. Results also show that the proposed MA is promising quality solutions in a short computation time.  相似文献   

15.
In this paper, we consider a capacitated single-level dynamic lot-sizing problem with sequence-dependent setup costs and times that includes product substitution options. The model is motivated from a real-world production planning problem of a manufacturer of plastic sheets used as an interlayer in car windshields. We develop a mixed-integer programming (MIP) formulation of the problem and devise MIP-based Relax&Fix and Fix&Optimize heuristics. Unlike existing literature, we combine Fix&Optimize with a time decomposition. Also, we develop a specialized substitute decomposition and devise a computation budget allocation scheme for ensuring a uniform, efficient usage of computation time by decompositions and their subproblems. Computational experiments were performed on generated instances whose structure follows that of the considered practical application and which have rather tight production capacities. We found that a Fix&Optimize algorithm with an overlapping time decomposition yielded the best solutions. It outperformed the state-of-the-art approach Relax&Fix and all other tested algorithm variants on the considered class of instances, and returned feasible solutions with neither overtime nor backlogging for all instances. It returned solutions that were on average only 5% worse than those returned by a standard MIP solver after 4 hours and 19% better than those of Relax&Fix.  相似文献   

16.
An inventory routing problem is a variation of the vehicle routing problem in which inventory and routing decisions are determined simultaneously over a given time horizon. The objective is to minimize the sum of transportation and inventory costs. In this paper, we study a specific inventory routing problem in which goods are perishable (PIRP). We develop a mathematical model for PIRP and exploit its structure to develop a column generation-based solution approach. Cutting planes are added to improve the formulation. We present computational experiments to demonstrate that our methodology is effective, and that the integration of routing and inventory can yield significant cost savings.  相似文献   

17.
对小规模MTSP问题,建立了可精确求解方案的0-1规划模型,并在满足邮政运输需求的前提下给出了最佳方案.问题一首先以县支局、县局为顶点构建无向赋权图,通过Floyd算法求解各局间的最短距离;然后以Fijk为决策变量,以邮车工作时间、车辆运载能力为主要约束,建立以总空载损失费用最小为目标的0-1非线性规划模型,运用规划软件Lingo求解.问题二考虑到市邮路成本,我们采用分层规划策略,首先以市支局、县局为顶点构建无向赋权图,求解出最短路矩阵,建立以邮路运行成本最小为目标的0-1非线性规划模型IIA求解;然后,建立各县区的最短路矩阵,同样建立规划模型IIB求解各县运输方案.问题三由于县局地理位置不变,对区邮路无影响,故以全市各县支局为中心采用逐步最优方法对所有县区支局重新划分;然后采用模型IIB求解.第四问中考虑县局迁移,我们建立近似的启发式算法完成县局选址,并运用规划模型II求解的到新方案.最后,我们对两种区域划分调整方法还进行了定量的分析.  相似文献   

18.
郭放  杨珺  杨超 《运筹与管理》2018,27(9):33-44
电动汽车参与的物流配送服务需要统筹协调车辆路径、配送对象与换电策略。本文提出了考虑货物分类需求的电动汽车路径优化与换电策略问题,并建立了该问题的整数规划数学模型。其次,提出了基于禁忌搜索-改进节约算法的两阶段混合启发式算法MCWTS和一种四阶段启发式算法IGALNS。通过多组小规模算例验证了算法的有效性。随后,分别从运营成本、路径距离、换电策略以及混合运输线路等方面比较并分析了货物分类对运营策略的影响。实验结果表明,该模型可以在配送距离略有增加的情况下避免将不适宜混合运输的货物指派给同一车辆,达到降低货物运输损失提高顾客满意度的目的。最后,通过多组较大规模算例对两种启发式算法的有效性进行了比较。  相似文献   

19.
In this paper, we consider the capacitated multi-facility Weber problem with rectilinear distance. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the rectilinear distance separating them. We first give a new mixed integer linear programming formulation of the problem by making use of a well-known necessary condition for the optimal facility locations. We then propose new heuristic solution methods based on this formulation. Computational results on benchmark instances indicate that the new methods can provide very good solutions within a reasonable amount of computation time.  相似文献   

20.
In the shipping and transportation industry, there are several types of standard containers with different dimensions and different associated costs. In this paper, we examine the multiple container loading cost minimization problem (MCLCMP), where the objective is to load products of various types into containers of various sizes so as to minimize the total cost. We transform the MCLCMP into an extended set cover problem that is formulated using linear integer programming and solve it with a heuristic to generate columns. Experiments on standard bin-packing instances show our approach is superior to prior approaches. Additionally, since the optimal solutions for existing test data is unknown, we propose a technique to generate test data with known optimal solutions for MCLCMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号