首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhi-Bo Feng 《Physics letters. A》2008,372(21):3773-3777
This Letter proposes a theoretical scheme for scalable quantum computing with charge-phase qubits inside a common cavity. Individually addressing the applied gate pulses, we obtain the switchable interqubit couplings mediated by the cavity mode, from which a universal set of logic gates can be constructed. In our scheme the interqubit couplings are completely feasible to perform conditional gates, and the classical microwaves cause negligible leakage errors.  相似文献   

2.
Nonadiabatic holonomic quantum computation has received increasing attention due to its robustness against control errors.However,all the previous schemes have to use at least two sequentially implemented gates to realize a general one-qubit gate.Based on two recent reports,we construct two Hamiltonians and experimentally realized nonadiabatic holonomic gates by a single-shot implementation in a two-qubit nuclear magnetic resonance(NMR)system.Two noncommuting one-qubit holonomic gates,rotating along x?and z?axes respectively,are implemented by evolving a work qubit and an ancillary qubit nonadiabatically following a quantum circuit designed.Using a sequence compiler developed for NMR quantum information processor,we optimize the whole pulse sequence,minimizing the total error of the implementation.Finally,all the nonadiabatic holonomic gates reach high unattenuated experimental fidelities over 98%.  相似文献   

3.
High-fidelity quantum gates are essential for large-scale quantum computation. However, any quantum manipulation will inevitably affected by noises, systematic errors and decoherence effects, which lead to infidelity of a target quantum task. Therefore, implementing high-fidelity, robust and fast quantum gates is highly desired. Here, we propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum computation based on resonant interaction of three-level quantum systems via shortcuts to adiabaticity. In our proposal, the target Hamiltonian to induce noncyclic non-Abelian geometric phases can be inversely engineered with less evolution time and demanding experimentally, leading to high-fidelity quantum gates in a simple setup. Besides, our scheme is readily realizable in physical system currently pursued for implementation of quantum computation. Therefore, our proposal represents a promising way towards fault-tolerant geometric quantum computation.  相似文献   

4.
We propose a new approach to quantum phase gates via the adiabatic evolution. The conditional phase shift is neither of dynamical nor geometric origin. It arises from the adiabatic evolution of the dark state itself. Taking advantage of the adiabatic passage, this kind of quantum logic gates is robust against moderate fluctuations of experimental parameters. In comparison with the geometric phase gates, it is unnecessary to drive the system to undergo a desired cyclic evolution to obtain a desired solid angle. Thus, the procedure is simplified, and the fidelity may be further improved since the errors in obtaining the required solid angle are avoided. We illustrate such a kind of quantum logic gates in the ion trap system. The idea can also be realized in other systems, opening a new perspective for quantum information processing.  相似文献   

5.
Decoherence-induced leakage errors can couple a physical or encoded qubit to other levels, thus potentially damaging the qubit. They can therefore be very detrimental in quantum information processing and require special attention. Here we present a general method for removing such errors by using simple decoupling and recoupling pulse sequences. The proposed gates are experimentally accessible in a variety of promising quantum-computing proposals.  相似文献   

6.
Quantum optimal control theory allows us to design accurate quantum gates. We employ it to design high-fidelity two-bit gates for Josephson charge qubits in the presence of both leakage and noise. Our protocol considerably increases the fidelity of the gate and, more important, it is quite robust in the disruptive presence of 1/f noise. The improvement in the gate performances discussed in this work (errors approximately 10(-3)-10(-4) in realistic cases) allows us to cross the fault tolerance threshold.  相似文献   

7.
The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.  相似文献   

8.
In this Letter we propose a fully scalable randomized benchmarking protocol for quantum information processors. We prove that the protocol provides an efficient and reliable estimate of the average error-rate for a set operations (gates) under a very general noise model that allows for both time and gate-dependent errors. In particular we obtain a sequence of fitting models for the observable fidelity decay as a function of a (convergent) perturbative expansion of the gate errors about the mean error. We illustrate the protocol through numerical examples.  相似文献   

9.
Quantum simulation uses a well-known quantum system to predict the behavior of another quantum system. Certain limitations in this technique arise, however, when applied to specific problems, as we demonstrate with a theoretical and experimental study of an algorithm proposed by Wu, Byrd, and Lidar [Phys. Rev. Lett. 89, 057904 (2002).10.1103/PhysRevLett.89.057904] to find the low-lying spectrum of a pairing Hamiltonian. While the number of elementary quantum gates required scales polynomially with the size of the system, it increases inversely to the desired error bound E. Making such simulations robust to decoherence using fault tolerance requires an additional factor of approximately 1/E gates. These constraints, along with the effects of control errors, are illustrated using a three qubit NMR system.  相似文献   

10.
We study numerically the effects of static imperfections and residual couplings between qubits for the quantum phase estimation algorithm with two qubits. We show that the success probability of the algorithm is affected significantly more by static imperfections than by random noise errors in quantum gates. An improvement of the algorithm accuracy can be reached by application of the Pauli-random-error-correction method (PAREC).  相似文献   

11.
High fidelity two-qubit gates are fundamental for scaling up the superconducting qubit number.We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength,and demonstrate the CZ gate using two different schemes,adiabatic and diabatic methods.The Clifford based randomized benchmarking(RB) method is used to assess and optimize the CZ gate fidelity.The fidelities of adiabatic and diabatic CZ gates are 99.53(8)% and 98.72(2)%,respectively.We also analyze the errors induced by the decoherence.Comparing to 30 ns duration time of adiabatic CZ gate,the duration time of diabatic CZ gate is 19 ns,revealing lower incoherence error rate r'_(incoherent,int)=0.0197(5) compared to r_(incoherent,int)=0.0223(3).  相似文献   

12.
郭奋卓  高飞  温巧燕  朱甫臣 《中国物理》2006,15(8):1690-1694
Using the generalized Bell states and quantum gates, we introduce a quantum encryption scheme of d-level states (qudits). The scheme can detect and correct arbitrary transmission errors using only local operations and classical communications between the communicators. In addition, the entanglement key used to encrypt can be recycled. The protocol is informationally secure, because the output state is a totally mixed one for every input state p.  相似文献   

13.
We show how realistic cavity-assisted interaction between neutral atoms and coherent optical pulses, and measurement techniques, combined with optical transportation of atoms, allow for a universal set of quantum gates acting on decoherence--free subspace in a deterministic way. The logical qubits are immunized to the dominant source of decoherece-dephasing, while the influences of additional errors are shown by numerical simulations. We analyze the performance and stability of all required operations and emphasize that all techniques are feasible with current experimental technology.  相似文献   

14.
We consider the model of quantum computer, which is represented as a Ising spin lattice, where qubits (spin-half systems) are separated by the isolators (two spin-half systems). In the idle mode or at the single bit operations the total spin of isolators is 0. There are no need of complicated protocols for correcting the phase and probability errors due to permanent interaction between the qubits. We present protocols for implementation of universal quantum gates with the rectangular radio-frequency pulses.  相似文献   

15.
With a combination of the quantum repeater and the cluster state approaches, we show that efficient quantum computation can be constructed even if all the entangling quantum gates only succeed with an arbitrarily small probability p. The required computational overhead scales efficiently both with 1/p and n, where n is the number of qubits in the computation. This approach provides an efficient way to combat noise in a class of quantum computation implementation schemes, where the dominant noise leads to probabilistic signaled errors with an error probability 1-p far beyond any threshold requirement.  相似文献   

16.
《中国物理 B》2021,30(7):70309-070309
Homomorphic encryption has giant advantages in the protection of privacy information. In this paper, we present a new kind of probabilistic quantum homomorphic encryption scheme for the universal quantum circuit evaluation. Firstly,the pre-shared non-maximally entangled states are utilized as auxiliary resources, which lower the requirements of the quantum channel, to correct the errors in non-Clifford gate evaluation. By using the set synthesized by Clifford gates and T gates, it is feasible to perform the arbitrary quantum computation on the encrypted data. Secondly, our scheme is different from the previous scheme described by the quantum homomorphic encryption algorithm. From the perspective of application, a two-party probabilistic quantum homomorphic encryption scheme is proposed. It is clear what the computation and operation that the client and the server need to perform respectively, as well as the permission to access the data. Finally, the security of probabilistic quantum homomorphic encryption scheme is analyzed in detail. It demonstrates that the scheme has favorable security in three aspects, including privacy data, evaluated data and encryption and decryption keys.  相似文献   

17.
吴怀志  杨贞标  郑仕标 《中国物理 B》2012,21(4):40305-040305
The quantum swap gate is one of the most useful gates for quantum computation. Two-qubit entanglement and a controlled-NOT quantum gate in a neutral Rydberg atom system have been achieved in recent experiments. It is therefore very interesting to propose a scheme here for swapping a quantum state between two trapped neutral atoms via the Rydberg blockade mechanism. The atoms interact with a sequence of laser pulses without individual addressing. The errors of the swap gate due to imprecision of pulse length, finite Rydberg interaction, and atomic spontaneous emission are discussed.  相似文献   

18.
We report the first experimental demonstration of a nuclear phase estimation algorithms. Using feedback and iterations, magnetic resonance (NMR) realization of iterative we experimentally obtain the phase with 6 bits of precision on a two-qubit NMR quantum computer. Furthermore, we experimentally demonstrate the effect of gate noise on the iterative phase estimation algorithm. Our experimental results show that errors of measurements of the phase depend strongly on the precision of coupling gates. This experiment can be used as a benchmark for multi-qubit realizations of quantum information processing and precision measurements.  相似文献   

19.
We analyze the achievable precision for single-qubit gates that are based on off-resonant Raman transitions between two near-degenerate ground states via a virtually excited state. In particular, we study the errors due to non-perfect adiabaticity and due to spontaneous emission from the excited state. For the case of non-adiabaticity, we calculate the error as a function of the dimensionless parameter χ=Δτ, where Δ is the detuning of the Raman beams and τ is the gate time. For the case of spontaneous emission, we give an analytical argument that the gate errors are approximately equal to Λ γ/Δ, where Λ is the rotation angle of the one-qubit gate and γ is the spontaneous decay rate, and we show numerically that this estimate holds to good approximation.  相似文献   

20.
Since Controlled-Square-Root-of-NOT (CV, CV?) gates are not permutative quantum gates, many existing methods cannot effectively synthesize optimal 3-qubit circuits directly using the NOT, CNOT, Controlled-Square-Root-of-NOT quantum gate library (NCV), and the key of effective methods is the mapping of NCV gates to four-valued quantum gates. Firstly, we use NCV gates to create the new quantum logic gate library, which can be directly used to get the solutions with smaller quantum costs efficiently. Further, we present a novel generic method which quickly and directly constructs this new optimal quantum logic gate library using CNOT and Controlled-Square-Root-of-NOT gates. Finally, we present several encouraging experiments using these new permutative gates, and give a careful analysis of the method, which introduces a new idea to quantum circuit synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号