首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
2.
The assessment of additive value functions in Multicriteria Decision Aid (MCDA) has to face issues of legitimacy and technical difficulties when real decision makers are involved. This paper presents a synergy of three complementary techniques to assess additive models on the whole criteria space. The synergy includes a revised MACBETH technique, the standard MAUT trade-off analysis and UTA-based methods for the assessment of both the marginal value functions and the weighting factors. The paper uses a set of original robustness measures and rules associated with revised MACBETH and UTA in order to manage multiple linear programming solutions and to extract robust conclusions from them. Finally, to illustrate the methods’ synergy, an application example is presented, dealing with the planning of metro extension lines.  相似文献   

3.
Models for Multiple Criteria Decision Analysis (MCDA) often separate per-criterion attractiveness evaluation from weighted aggregation of these evaluations across the different criteria. In simulation-based MCDA methods, such as Stochastic Multicriteria Acceptability Analysis, uncertainty in the weights is modeled through a uniform distribution on the feasible weight space defined by a set of linear constraints. Efficient sampling methods have been proposed for special cases, such as the unconstrained weight space or complete ordering of the weights. However, no efficient methods are available for other constraints such as imprecise trade-off ratios, and specialized sampling methods do not allow for flexibility in combining the different constraint types. In this paper, we explore how the Hit-And-Run sampler can be applied as a general approach for sampling from the convex weight space that results from an arbitrary combination of linear weight constraints. We present a technique for transforming the weight space to enable application of Hit-And-Run, and evaluate the sampler’s efficiency through computational tests. Our results show that the thinning factor required to obtain uniform samples can be expressed as a function of the number of criteria n as φ(n) = (n − 1)3. We also find that the technique is reasonably fast with problem sizes encountered in practice and that autocorrelation is an appropriate convergence metric.  相似文献   

4.
In multiple criteria decision aiding, it is common to use methods that are capable of automatically extracting a decision or evaluation model from partial information provided by the decision maker about a preference structure. In general, there is more than one possible model, leading to an indetermination which is dealt with sometimes arbitrarily in existing methods. This paper aims at filling this theoretical gap: we present a novel method, based on the computation of the analytic center of a polyhedron, for the selection of additive value functions that are compatible with holistic assessments of preferences. We demonstrate the most important characteristics of this technique with an experimental and comparative study of several existing methods belonging to the UTA family.  相似文献   

5.
We present a method called Generalized Regression with Intensities of Preference (GRIP) for ranking a finite set of actions evaluated on multiple criteria. GRIP builds a set of additive value functions compatible with preference information composed of a partial preorder and required intensities of preference on a subset of actions, called reference actions. It constructs not only the preference relation in the considered set of actions, but it also gives information about intensities of preference for pairs of actions from this set for a given decision maker (DM). Distinguishing necessary and possible consequences of preference information on the considered set of actions, GRIP answers questions of robustness analysis. The proposed methodology can be seen as an extension of the UTA method based on ordinal regression. GRIP can also be compared to the AHP method, which requires pairwise comparison of all actions and criteria, and yields a priority ranking of actions. As for the preference information being used, GRIP can be compared, moreover, to the MACBETH method which also takes into account a preference order of actions and intensity of preference for pairs of actions. The preference information used in GRIP does not need, however, to be complete: the DM is asked to provide comparisons of only those pairs of reference actions on particular criteria for which his/her judgment is sufficiently certain. This is an important advantage comparing to methods which, instead, require comparison of all possible pairs of actions on all the considered criteria. Moreover, GRIP works with a set of general additive value functions compatible with the preference information, while other methods use a single and less general value function, such as the weighted-sum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号