首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of isomeric 2-and 4-azidostyrylquinolines and their protonated forms in the ground (S 0) and the lowest excited singlet (S 1) states were calculated by the PM3 semiempirical method and the density functional theory (DFT) using the B3LYP/6-31G* basis set. It was shown that the σ NN * molecular orbital, which is localized on the azide group and is antibonding for the N-N2 bond, is populated in the S1 state of these azides in both neutral and protonated forms. Based on this result, it was assumed that the test azides would be photoactive in both forms, i.e., would have a photodissociation quantum yield of φ > 0.1. The calculation of absorption spectra by the TD B3LYP/6-31G* method showed that the long-wavelength absorption bands of the protonated forms are shifted to visible spectral region, thus suggesting that azidostyrylquinolines in the protonated form will be sensitive to visible light.  相似文献   

2.
The geometries of 7-azaindole (7AI), its tautomer (7AT), and 7AI–H2O and 7AT–H2O complexes were optimised in the ground state and some low-lying singlet excited states using the 3-21G basis set. Differences of total energies of the optimised ground and excited states and the vertical excitation energies of these systems were used to explain the observed electronic spectra. Effect of solvation of these systems in bulk water was studied using the polarized continuum model (PCM). The mode of binding of a water molecule in the S2(n–π*) excited state of 7AI was found to be quite different from those in its ground and π–π* excited states. It is shown that crossing of the lowest two singlet excited-state potential surfaces S1(π–π*) and S2(n–π*) of 7AI occurs in the vapour phase under geometry relaxation while on interaction with water, the S2(n–π*) excited state is raised up appreciably going even above the S3(π–π*) excited state. Ground- and excited-state molecular electrostatic potential mapping was carried out, which led to valuable information regarding the nature of excited states of the above-mentioned systems.  相似文献   

3.
It was found that the quantum yield of 9-azidoacridine photodissociation was equal to 0.95 (in acetonitrile) and remained unchanged upon protonation. Quantum-chemical calculations on the structures of the azide and its cation in the ground (S 0) and the lower single excited (S 1) state were performed using semiempirical (PM3) and ab initio (HF, B3LYP) methods. The σ NN * antibonding orbital at the N-N2 bond was occupied in both of the azides in the S 1 state; this fact is consistent with the photochemical activity of these compounds. Because of the presence of absorption bands in the visible region of the spectrum, 9-azidoacridinium hydrochloride is sensitive to visible light, and, among all of the currently known arylazides, it is sensitive to light with the longest wavelength: the quantum yield of its photodissociation is 0.65 on irradiation with 470-nm light.  相似文献   

4.
The quantum yield of photodissociation of 9-(4-azidophenyl)acridine (1) is equal to 0.82, and that of its protonated form 2 is 6.9·10−3. The observed quantum yield of the system can smoothly be controlled in these limits varying the acidity of the medium. According to quantum chemical data, reactivity difference between neutral azide 1 and cation 2 is caused by the fact that in the lowest singlet-excited state (S1) of azide 1 the antibonding σ*NN molecular orbital is occupied, while this orbital remains unoccupied in the excited state of cation 2. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2655–2660, December, 2005.  相似文献   

5.
The structure and vibrational frequencies of 1,4-benzodioxan in its S1(π, π*) electronic state have been calculated using the GAUSSIAN 03 and TURBOMOLE programs. The results have been compared to experimental data and also to the ground state. Structural data for the T1(π, π*) state have also been calculated. The theoretical frequencies agree very well with the experimental values for the S0 electronic ground state but are less accurate for the S1 excited state. Nonetheless, they provide valuable guidance for excited state calculations.  相似文献   

6.
Molecular geometries of the nucleic acid bases thymine, cytosine and uracil in the ground and the lowest two singlet excited states were optimized using the ab initio approach employing the 4-31G basis set for all the atoms except the amino group of cytosine for which the 6-311+G* basis set was used. The excited state calculations were performed employing configuration interaction involving singly excited configurations (CIS). Vibrational frequencies were computed in order to examine the nature of the stationary points on the potential energy surfaces obtained by geometry optimization. While the ground state geometries of uracil and thymine (except the methyl group hydrogens) are planar, the corresponding excited state geometries were found to be significantly nonplanar. In the case of cytosine, the amino group is pyramidal and the rest of the molecule is only slightly nonplanar in the ground state, but the excited state geometries are appreciably nonplanar. In particular, consequent to the S2(n–π*) excitation of cytosine, the amino group plane is strongly rotated. While thymine is stable in the S2(π–π*) excited state, uracil appears to be dissociative in the corresponding excited state.  相似文献   

7.
Para-hydroxy methylcinnamate is part of the cinnamate family of molecules. Experimental and computational studies have suggested conflicting non-radiative decay routes after photoexcitation to its S1(ππ*) state. One non-radiative decay route involves intersystem crossing mediated by an optically dark singlet state, whilst the other involves direct intersystem crossing to a triplet state. Furthermore, irrespective of the decay mechanism, the lifetime of the initially populated S1(ππ*) state is yet to be accurately measured. In this study, we use time-resolved ion-yield and photoelectron spectroscopies to precisely determine the S1(ππ*) lifetime for the s-cis conformer of para-hydroxy methylcinnamate, combined with time-dependent density functional theory to determine the major non-radiative decay route. We find the S1(ππ*) state lifetime of s-cis para-hydroxy methylcinnamate to be ∼2.5 picoseconds, and the major non-radiative decay route to follow the [1ππ*→1nπ*→3ππ*→S0] pathway. These results also concur with previous photodynamical studies on structurally similar molecules, such as para-coumaric acid and methylcinnamate.  相似文献   

8.
Photophysical study of phenylisatin and oxindole triplet states have been made at room temperature and in different glasses at 77K. Qualitatively, in all respects the compounds have identical spectroscopic characteristics. Phosphorescence emission, excitation along with their polarization and lifetime suggest that a perturbation of the zero-point level of emitting state (3ππ*) by a close-lying triplet state (3nπ*) leads to a number of new spectral features. The experimental observations have been interpreted satisfactorily in terms of a switch (3ππ* state to 3nπ*) in the character of the lowest triplet states (T1 and T2) and also a similar switch in the character of the excited singlet states S1 and S2 for a change of glass matrix from MCH to ethanol. Invoking of first order and second order spin-orbit coupling explains the phosphorescence emission unambiguously.  相似文献   

9.
Complexation of sulfones (S) with the -diketonate Eu(Fod)3 (Fod–heptafluorodimethyloctanedione) in the ground and excited electronic states in benzene solutions was studied. The stability constants and thermodynamic parameters for the formation of complexes Eu(Fod)3 · S in the ground state (K, H 0, S 0) and Eu(Fod)3 * · S in the excited state (K*, H 0 *, S 0 *) were determined. The excitation of ff transitions of Eu(III) was found to enhance the stability of Eu(Fod)3 · S complexes, apparently due to an increase in the acceptor ability of the Eu(III) chelate. This fact confirms the involvement of the 4f orbital in the chemical bond formation. The compensation effect was observed for the thermodynamic parameters: S 0 = (2.9 ± 0.3) × 10–3H 0 + (35.0 ± 4.0) in the ground and S 0 * = (3.3 ± 0.3) × 10–3H 0 * + (49.0 ± 5.0) in the excited states of Eu(Fod)3. It was shown that electronic excitation of the 4f orbital of Eu(Fod)3 influences isotopic effects in complexation with sulfolanes.  相似文献   

10.
The excited state lifetimes of uracil, thymine and 5-fluorouracil have been measured using femtosecond UV fluorescence upconversion in various protic and aprotic polar solvents. The fastest decays are observed in acetonitrile and the slowest in aqueous solution while those observed in alcohols are intermediate. No direct correlation with macroscopic solvent parameters such as polarity or viscosity is found, but hydrogen bonding is one key factor affecting the fluorescence decay. It is proposed that the solvent modulates the relative energy of two close-lying electronically excited states, the bright ππ* and the dark nπ* states. This relative energy gap controls the non-radiative relaxation of the ππ* state through a conical intersection close to the Franck–Condon region competing with the ultrafast internal conversion to the ground state. In addition, an inverse isotope effect is observed in D2O where the decays are faster than in H2O.  相似文献   

11.
Reaction of (R,R)-(−)- and (S,S)-(+)-1,2-bis(pyrrol-2-ylmethyleneamino)cyclohexane with K2PtCl4 afforded chiral, neutral platinum(II) Schiff base complexes of (R,R)-PtL and (S,S)-PtL with high yields. The rare C–HPt(II) intermolecular interaction was found to show considerable strength and directionality for controlling M and P helical supramolecular architectures of (R,R)-PtL and (S,S)-PtL, respectively, in crystal lattices. More importantly, the open square-planar geometry of platinum(II) complexes allows axial C–HPt(II) interaction, resulting in the 3(ππ*) excited state with some mixing of the Pt(II) metal character observed both in concentrated solutions and in the solid state at room temperature.  相似文献   

12.
Complexation of sulfoxides R1R2S=O with the -diketonate Eu(fod)3(fod is heptafluorodimethyloctanedionato) in the ground and excited states in benzene solutions was studied. Excitation of Eu(fod)3was found to increase the formation constants and to reverse the sign of the enthalpy of complexation. The compensation effect was observed for the thermodynamic parameters: S 0= (3.4 ± 0.4) × 10–3H 0+ (50.0 ± 4.7) in the ground state and S * 0= (3.2 ± 0.4) × 10–3H * 0+ (62.0 ± 0.6) in the excited state of Eu(fod)3. The enhancement of the stability of the complexes [Eu(fod)* 3· R1R2S=O] is due to an increase in the entropy of complexation upon excitation of fftransitions in Eu(III).  相似文献   

13.
High level ab initio and density functional theory calculations have been carried out to investigate the relative stability of the different conformers of hyponitrous acid and its mono- and dithio-derivatives. Geometries and vibrational frequencies were obtained at the B3LYP/6-311+G(d,p) level and final energies through B3LYP/6-311++G(3df,2pd) single point calculations. The reliability of this theoretical scheme has been assessed by comparing these DFT results with those obtained at the G3 level of theory, for some suitable cases. The cis conformers of hyponitrous acid and its mono- and dithio-derivatives are systematically more stable than the trans ones because in the cis conformation a dative interaction between the nitrogen-lone pairs and the σNX^* antibonding orbital is significantly favored. Quite interestingly, in general, the conformers presenting an intramolecular hydrogen bond (IHB) are not the global minima of the corresponding potential energy surfaces and only for hyponitrous acid the conformer with a OH ⋅s O IHB is slightly more stable than the cis conformer without IHB. The low stability of the tautomers with IHB is closely related with another weak intramolecular interaction which involves the lone-pairs of the chalcogen atoms and the πNN* antibondig orbital, and which is significantly perturbed when the IHB is formed.  相似文献   

14.
Nitroaromatics seldom fluoresce. The importance of electron-deficient (n-type) conjugates, however, has inspired a number of strategies for suppressing the emission-quenching effects of the strongly electron-withdrawing nitro group. Here, we demonstrate how such strategies yield fluorescent nitroaryl derivatives of dipyrrolonaphthyridinedione (DPND). Nitro groups near the DPND core quench its fluorescence. Conversely, nitro groups placed farther from the core allow some of the highest fluorescence quantum yields ever recorded for nitroaromatics. This strategy of preventing the known processes that compete with photoemission, however, leads to the emergence of unprecedented alternative mechanisms for fluorescence quenching, involving transitions to dark nπ* singlet states and aborted photochemistry. Forming nπ* triplet states from ππ* singlets is a classical pathway for fluorescence quenching. In nitro-DPNDs, however, these ππ* and nπ* excited states are both singlets, and they are common for nitroaryl conjugates. Understanding the excited-state dynamics of such nitroaromatics is crucial for designing strongly fluorescent electron-deficient conjugates.

Dipyrrolonaphthyridinedione appended with para- or meta-nitrophenyl substituents exhibits strong fluorescence from a 1ππ* S1 state.  相似文献   

15.
Spin-density functional theory calculations are presented for NO adsorbed on Ag{111}. The ground state for the monomeric species is chemisorbed in an upright configuration, but retains 90% of the spin-density of the free molecule, in the molecular 2π* orbital. In constrast, two NO molecules in upright configuration chemisorbed at neighbouring fcc and hcp sites have zero spin-density, and charge density difference plots demonstrate π bonding as in the free dimer, (NO)2.  相似文献   

16.
The effects of CO complexation on highly exothermic vanadium oxidation reactions is evaluated. We study the chemiluminescent (CL) reaction products formed when vanadium vapor entrained in Ar or CO is oxidized by O3 or NO2. The multiple collision V+Ar+O3→VO*(C 4Σ, 4Φ, 2X)+Ar+O2 reactive encounter yields two previously unreported VO excited states, whereas the V+Ar+NO2→VO*+Ar+NO reactive encounter populates states up to and including VO* C 4Σ. The multiple collision V+nCO+O3 reactive encounter would appear to form a VOCO excited state complex, emitting in the region 420–560 nm, via the formation and oxidation of V(CO)2 viz. V(CO)2+O3→VOCO*+CO+O2 and a relaxed VO excited state emitter via V+nCO+O3→VO*+nCO+O2 where the VO excited state excitation is mediated by V–CO complexation. In complement, the much less exothermic V–NO2 encounter displays an emission which, in concert with previous studies of CO complexation, suggests the formation of a VO(CO)2 excited state complex viz. V(CO)2+NO2→VO(CO)2*+NO. The experiments characterizing CL are complemented by comparative laser-induced fluorescence studies of the VO X 4Σ–CO and Ar interactions and their influence on the VO C 4Σ–X 4Σ laser-induced excitation spectrum. These studies, in conjunction with further attempts to excite LIF in the 420–560 nm region, suggest that the observed complex emissions result primarily from VO excited state interactions. Complementary time-of-flight mass spectroscopy of vanadium and vanadium-oxide–carbonyl complex formation demonstrates the formation of V(CO), V(CO)2, V2(CO), and VOCO, the latter three of which demonstrate clear metastable-ion dissociation peaks for the processes VOCO+→V++CO2, V(CO)2+→V++2CO, and V2(CO)+→V2++CO, suggesting that these vanadium complexes when formed in a reaction-based environment may be photodissociated with light in the visible and ultraviolet regions.  相似文献   

17.
A self-consistent-field-Xα-scattered-wave molecular orbital calculation was carried out on the [CpMoS(μ-S)]2(Cp = η5-C5H5) complex. The calculated results were used to rationalize the observed photochemical isomerization of the title complex to [CpMo(μ-S)][μ-S2]. It is proposed that a terminal sulfur (St) → Mo charge-transfer excitation is responsible for the isomerization, which is an intramolecular redox; i.e. Mo(V) is reduced to Mo(IV) and S2− is oxidized to S22− , a result consistent with the charge-transfer character of the excitation. Specifically, the transition responsible for the isomerization is proposed to be 16bu → 18ag (1Ag1Bu). The 18ag orbital is primarily Mo in character but it is also Mo---St π-antibonding; cleavage of the Mo---St π-bond facilitates the isomerization.  相似文献   

18.
19.
Photochemical activation by triplet photosensitizers is highly expedient for a green focus society. In this work, we have theoretically probed excited state characteristics of thioxanthone and its derivatives for their triplet harvesting efficiency using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Absorption and triplet energies corroborate well with the available experimental data. Our results predict that both the S1 and T1 states are π-π* in nature, which renders a high oscillator strength for S0 to S1 transition. Major triplet exciton conversion occurs through intersystem crossing (ISC) channel between the S1 (1π-π*) and high energy 3n- π* state. Apart from that, there is both radiative and non-radiative channel from S1 to S0, which competes with the ISC channel and reduces the triplet harvesting efficiency. For thioxanthones with −OMe (Me=Methyl) or −F substitution at 2 or 2’ positions, the ISC channel is not energetically feasible, causing sluggish intersystem crossing quantum yield (ΦISC). For unsubstituted thioxanthone and for isopropyl substitution at 2’ position, the S1-T1 gap is slightly positive ( ), rendering a lower triplet harvesting efficiency. For systems with −OMe or −F substitution at 3 or 3’ position of thioxanthone, because of buried π state and high energy π* state, the S1-3nπ* gap becomes negative. This leads to a high ΦISC (>0.9), which is key to being an effective photocatalyst.  相似文献   

20.
Multi-reference configuration interaction, MR-CI (including extensivity corrections, named +Q), calculations were performed on the S0–S3 states of cyclohexa-2,4-diene-1-thione (thione 24 ) and cyclohexa-2,5-diene-1-thione (thione 25 ), which are thione isomers of thiophenol. Several types of uncontracted MR-CIS and MR-CISD wavefunctions were employed, comprising MR-CI expansions as large as ~365 × 106 configuration state functions. The nature of the studied excited states was characterized. Vertical excitation energies (ΔE) and oscillator strengths (f) were computed. The most intense transitions (S0 → S2 for 24 and S0 → S3 for 25 ) did not change with the wavefunction, although a variation as large as ~1 eV was obtained for the S3 state of 24 , at the highest (MR-CI+Q) level. On the other hand, ΔE changed at most by ~0.56 eV for 25 as the wavefunction changes, at the same level. The S1 state of both thiones was found to have nπ* character and is in the visible region. For 24 , S2 and S3 are ππ* and nπ* states, respectively, while for 25 the reverse order is obtained. S2 and S3 are in the range ~3.5 to 5.2 eV, again at the highest level. It is the first time that the excited states of the title molecules are studied. The computed results agree with the experimental onset of photoreactions of thiones 24 and 25 found by Reva et al (Phys. Chem. Chem. Phys., 2015 , 17, 4888).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号