首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
An explicit N-fold Darboux transformation with multiparameters for nonlinear Schrödinger equation is constructed with the help of its Lax pairs and a reduction technique. According to this Darboux transformation, the solutions of the nonlinear Schrödinger equation are reduced to solving a linear algebraic system, from which a unified and explicit formulation of N-soliton solutions with multiparameters for the nonlinear Schrödinger equation is given.  相似文献   

2.
To the best of our knowledge, all nonlinearities in the known nonlinear integrable systems are either local or nonlocal. A natural problem is whether there exist some nonlinear integrable systems with both local and nonlocal nonlinearities, and how to solve this kinds of spectral nonlinear integrable systems with both local and nonlocal nonlinearities. Recently, some novel mixed local-nonlocal vector Schrödinger equations are presented, which are different from the single local and nonlocal coupled Schrödinger equation. We investigate the Darboux transformation of mixed local-nonlocal vector Schrödinger equations with a spectral problem. Starting from a special Lax pairs, the mixed localnonlocal vector Schrödinger equations are constructed. We obtain the one- and two- and N-soliton solution formulas of the mixed local-nonlocal vector Schrödinger equations with N-fold Darboux transformation. Based on the obtained solutions, the propagation and interaction structures of these multi-solitons are shown, the evolution structures of the one-solitons are exhibited, the overtaking elastic interactions among the two-breather solitons are considered. We find that unlike the local and nonlocal cases, the mixed local-nonlocal vector Schrödinger equations have some novel results. The results in this paper might be helpful for understanding some physical phenomena described in plasmas.  相似文献   

3.
In this paper, the modulation instability(MI), rogue waves(RWs) and conservation laws of the coupled higher-order nonlinear Schr?dinger equation are investigated. According to MI and the2?×?2 Lax pair, Darboux-dressing transformation with an asymptotic expansion method, the existence and properties of the one-, second-, and third-order RWs for the higher-order nonlinear Schr?dinger equation are constructed. In addition, the main characteristics of these solutions are discussed through some graphics, which are draw widespread attention in a variety of complex systems such as optics, Bose–Einstein condensates, capillary flow, superfluidity, fluid dynamics,and finance. In addition, infinitely-many conservation laws are established.  相似文献   

4.
We consider an extended nonlinear Schrödinger equation with higher-order odd and even terms with independent variable coefficients. We demonstrate its integrability, provide its Lax pair, and, applying the Darboux transformation, present its first and second order soliton solutions. The equation and its solutions have two free parameters. Setting one of these parameters to zero admits two limiting cases: the Hirota equation on the one hand and the Lakshmanan–Porsezian–Daniel (LPD) equation on the other hand. When both parameters are zero, the limit is the nonlinear Schrödinger equation.  相似文献   

5.
李再东  吴璇  李秋艳  贺鹏斌 《中国物理 B》2016,25(1):10507-010507
In terms of Darboux transformation, we have exactly solved the higher-order nonlinear Schrdinger equation that describes the propagation of ultrashort optical pulses in optical fibers. We discuss the modulation instability(MI) process in detail and find that the higher-order term has no effect on the MI condition. Under different conditions, we obtain Kuznetsov–Ma soliton and Akhmediev breather solutions of higher-order nonlinear Schrdinger equation. The former describes the propagation of a bright pulse on a continuous wave background in the presence of higher-order effects and the soliton's peak position is shifted owing to the presence of a nonvanishing background, while the latter implies the modulation instability process that can be used in practice to produce a train of ultrashort optical soliton pulses.  相似文献   

6.
We formulate the dynamical equation of a 3 dimensional Heisenberg ferromagnetic (FM) spin system with bilinear and anisotropic interactions in the semiclassical limit. In the continuum limit the dynamics is found to be governed by a (3+1) dimensional nonlinear Schrödinger equation. We check the integrability of the dynamics by constructing Lax pair of operators. To express the nonlinear spin excitations in terms of magnetic soliton, we use Darboux transformation(DT) and Hirota bilinearization procedure .  相似文献   

7.
8.
A new Lax pair of the modified nonlinear Schrödinger equation is introduced in terme of the variable of the Fourier transform λ. The Lax pair has no usual symmetries between 12 and 21 elements and avoids the factor λ1/2. The basic equation of inverse scattering transformation is deduced in the Zakharov-Shabat form as well as in the Marchenko form.  相似文献   

9.
The integrable nonlocal Lakshmanan-Porsezian-Daniel (LPD) equation which has the higher-order terms (dispersions and nonlinear effects) is first introduced. We demonstrate the integrability of the nonlocal LPD equation, provide its Lax pair, and present its rational soliton solutions and self-potential function by using the degenerate Darboux transformation. From the numerical plots of solutions, the compression effects of the real refractive index profile and the gain-or-loss distribution produced by are discussed.  相似文献   

10.
《Nuclear Physics B》1999,561(3):451-466
A generalized inverse scattering method has been developed for arbitrary n-dimensional Lax equations. Subsequently, the method has been used to obtain N-soliton solutions of a vector higher order non-linear Schrödinger equation, proposed by us. It has been shown that under a suitable reduction, the vector higher order non-linear Schrödinger equation reduces to the higher order non-linear Schrödinger equation. An infinite number of conserved quantities have been obtained by solving a set of coupled Riccati equations. Gauge equivalence is shown between the vector higher order non-linear Schrödinger equation and the generalized Landau–Lifshitz equation and the Lax pair for the latter equation has also been constructed in terms of the spin field, establishing direct integrability of the spin system.  相似文献   

11.
In this paper, we construct the rogue wave solutions of the sixth-order nonlinear Schrödinger equation on a background of Jacobian elliptic functions dn and cn by means of the nonlinearization of a spectral problem and Darboux transformation approach. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.  相似文献   

12.
In this paper we consider exact solutions to the KdV equation under the Bargmann constraint. Solutions expressed through exponential polynomials and Wronskians are derived by bilinear approach through solving the Lax pair under the Bargmann constraint. It is also shown that the potential u in the stationary Sehrodinger equation can be a summation of squares of wave functions from bilinear point of view.  相似文献   

13.
We study the existence of dark solitons of the defocusing cubic nonlinear Schrödinger (NLS) eqaution with the spatially-periodic potential and nonlinearity. Firstly, we propose six families of upper and lower solutions of the dynamical systems arising from the stationary defocusing NLS equation. Secondly, by regarding a dark soliton as a heteroclinic orbit of the Poincaré map, we present some constraint conditions for the periodic potential and nonlinearity to show the existence of stationary dark solitons of the defocusing NLS equation for six different cases in terms of the theory of strict lower and upper solutions and the dynamics of planar homeomorphisms. Finally, we give the explicit dark solitons of the defocusing NLS equation with the chosen periodic potential and nonlinearity.  相似文献   

14.
We study some novel patterns of rogue wave in the coupled cubic-quintic nonlinear Schrödinger equations. Utilizing the generalized Darboux transformation, the higher-order rogue wave pairs of the coupled system are generated. Especially, the first-and second-order rogue wave pairs are discussed in detail. It demonstrates that two classical fundamental rogue waves can be emerged from the first-order case and four or six classical fundamental rogue waves from the second-order case. In the second-order rogue wave solution, the distribution structures can be in triangle, quadrilateral and ring shapes by fixing appropriate values of the free parameters. In contrast to single-component systems, there are always more abundant rogue wave structures in multi-component ones. It is shown that the two higher-order nonlinear coefficients ρ1 and ρ2 make some skews of the rogue waves.  相似文献   

15.
Under investigation in this work is the general coupled nonlinear Schrödinger (gCNLS) equation, which can be used to describe a wide variety of physical processes. By using Darboux transformation, the new higher-order rogue wave solutions of the equation are well constructed. These solutions exhibit rogue waves on a multi-soliton background. Moreover, the dynamics of these solutions is graphically discussed. Our results would be of much importance in enriching and predicting rogue wave phenomena arising in nonlinear and complex systems.  相似文献   

16.
We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrödinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quintic nonlinear Schrödinger equation with distributed dispersion and distributed linear gain, including bright similariton solution, fractional and combined Jacobian elliptic function solutions. Moreover, we discuss self-similar evolutional dynamic behaviors of these solutions in the dispersion decreasing fiber and the periodic distributed amplification system.  相似文献   

17.
The method of nonlinearization of spectral problems is developed to thedefocusing nonlinear Schrödinger equation. As an application, an integrable decomposition of the defocusing nonlinear Schrödinger equation is presented.  相似文献   

18.
We extend Lou's direct perturbation method for solving the nonlinear Schrödinger equation to the case of the derivative nonlinear Schrödinger equation (DNLSE). By applying this method, different types of perturbation solutions are obtained. Based on these approximate solutions, the analytical forms of soliton parameters, such as the velocity, the width and the initial position, are carried out and the effects of perturbation on solitons are analyzed at the same time. A numerical simulation of perturbed DNLSE finally verifies the results of the perturbation method.  相似文献   

19.
In this paper,the rogue waves of the higher-order dispersive nonlinear Schrödinger (HDNLS) equation are investigated,which describes the propagation of ultrashort optical pulse in optical fibers.The rogue wave solutions of HDNLS equation are constructed by using the modified Darboux transformation method.The explicit first and second-order rogue wave solutions are presented under the plane wave seeding solution background.The nonlinear dynamics and properties of rogue waves are discussed by analyzing the obtained rational solutions.The influence of little perturbation ε on the rogue waves is discussed with the help of graphical simulation.  相似文献   

20.
A coupled variable-coefficient higher-order nonlinear Schr(o|¨)dinger equation in biretringent fiber is studied,and analytical multi-soliton,combined bright and dark soliton,W-shaped and M-shaped soliton solutions are obtained.Nonlinear tunnelling of these combined solitons in dispersion barrier and dispersion well on an exponential background is discussed,and the decaying or increasing,even lossless tunnelling behaviors of combined solitons are decided by the decaying or increasing parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号